• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986
Citation: Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986

A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training

Funds: This work was supported by the National Key Basic Research and Development Program of China (2018YFC0809300, 2107YFB0202105, 2016YFB0200803, 2017YFB0202302), the National Natural Science Foundation of China (61972376), and the Beijing Natural Science Foundation (L182053).
More Information
  • Published Date: March 31, 2022
  • With the maturity of UAV (unmanned aerial vehicle) technology, vehicles equipped with cameras are widely used in various fields, such as security and surveillance, aerial photography and infrastructure inspection. It is important to automatically and efficiently analyze and understand the visual data collected from vehicles. The object detection algorithm based on deep convolutional neural network has made amazing achievements in many practical applications, but it is often accompanied by great resource consumption and memory occupation. Thus, it is challenging to run deep convolutional neural networks directly on embedded devices with limited computing power carried by vehicles, which leads to high latency. In order to meet these challenges, a novel pruning algorithm based on iterative sparse training is proposed to improve the computational effectiveness of the classic object detection network YOLOv3 (you only look once). At the same time, different data enhancement methods and related optimization means are combined to ensure that the precision error of the detector before and after compression is within an acceptable range. Experimental results indicate that the pruning scheme based on iterative sparse training proposed in this paper achieves a considerable compression rate of YOLOv3 within slightly decline in precision. The original YOLOv3 model contains 61.57 MB weights and requires 139.77GFLOPS(floating-point operations). With 98.72% weights and 90.03% FLOPS reduced, our model still maintains a decent accuracy, with only 2.0% mAP(mean average precision) loss, which provides support for real-time application of UAV object detection.
  • Related Articles

    [1]Li Pengcheng, Huang Libo, Chen Gang, Lai Mingche, Deng Lin, Liu Wei, Yang Qianming, Wang Yongwen. A Reconfigurable Single-Precision Approximate Floating-Point Multiplier Design[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202550116
    [2]Yao Hao, Xiong Jinghui, Li Chunsheng, Wu Changxing. Implicit Discourse Relation Recognition Based on Multi-Granularity Information Interaction and Data Augmentation[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440511
    [3]Wang Zepeng, Ma Chao, Zhang Zhuangzhuang, Wu Libing, Shi Xiaochuan. Dynamic Decision-Driven Threat Detection Method for Data Elements in Industrial Control Networks[J]. Journal of Computer Research and Development, 2024, 61(10): 2404-2416. DOI: 10.7544/issn1000-1239.202440387
    [4]Xiao Jinsheng, Zhao Tao, Zhou Jian, Le Qiuping, Yang Liheng. Small Target Detection Network Based on Context Augmentation and Feature Refinement[J]. Journal of Computer Research and Development, 2023, 60(2): 465-474. DOI: 10.7544/issn1000-1239.202110956
    [5]Fan Zhihua, Wu Xinxin, Li Wenming, Cao Huawei, An Xuejun, Ye Xiaochun, Fan Dongrui. Dataflow Architecture Optimization for Low-Precision Neural Networks[J]. Journal of Computer Research and Development, 2023, 60(1): 43-58. DOI: 10.7544/issn1000-1239.202111275
    [6]Jia Xun, Wu Guiming, Xie Xianghui, Wu Dong. A Coprocessor for Double-Precision Floating-Point Matrix Multiplication[J]. Journal of Computer Research and Development, 2019, 56(2): 410-420. DOI: 10.7544/issn1000-1239.2019.20170908
    [7]Zheng Ninghan, Gu Zhimin, Sun Xianhe. Performance Improvement for Irregular Data Intensive Hot-Slice with Low Computing Workload[J]. Journal of Computer Research and Development, 2013, 50(11): 2436-2443.
    [8]Xie Yingke, Wang Jiandong, Zhu Chao, Zhao Zili, Han Chengde. High Precision Timestamps in Network Measurement[J]. Journal of Computer Research and Development, 2010, 47(12).
    [9]Yu Canling, Wang Lizhen, and Zhang Yuanwu. An Enhancement Algorithm of Cluster Boundaries Precision Based on Grid's Density Direction[J]. Journal of Computer Research and Development, 2010, 47(5): 815-823.
    [10]Ru Liyun, Ma Shaoping, and Lu Jing. Feature Fusion Based on the Average Precision in Image Retrieval[J]. Journal of Computer Research and Development, 2005, 42(9): 1640-1646.
  • Cited by

    Periodical cited type(28)

    1. 张凯,张慧玲,王泽琛,王雪,方洋洋. 知识点表征强化的知识追踪模型. 计算机应用研究. 2025(01): 86-92 .
    2. 贾瑞,董永权,刘源,陈成. 知识点相关性与遗忘程度融合的深度知识追踪模型. 计算机研究与发展. 2025(02): 364-373 . 本站查看
    3. 李昆泽,张宇. 自适应的流水线式无监督问题生成方法. 计算机研究与发展. 2025(04): 905-914 . 本站查看
    4. 贺步贵,董永权,贾瑞,金家永. 基于多行为特征嵌入记忆网络的知识追踪模型. 太原理工大学学报. 2024(01): 184-194 .
    5. 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪. 山东大学学报(工学版). 2024(01): 100-108 .
    6. 张凯,付姿姿,纪涛. 习题内外表示异质融合的知识追踪模型. 计算机应用研究. 2024(03): 764-771 .
    7. 赵琰,马慧芳,王文涛,童海斌,贺相春. 可靠响应表示增强的知识追踪方法. 计算机工程与科学. 2024(03): 535-544 .
    8. 杨长虓. 用于加速预训练知识追踪模型的深层特征提取器. 智能计算机与应用. 2024(04): 173-176 .
    9. 张凯,方洋洋. 知识追踪驱动的智能导学系统设计与实现. 电脑知识与技术. 2024(12): 31-34 .
    10. 陈成,董永权,贾瑞,刘源. FKA-DKT:融合知识与能力的深度知识追踪模型. 南京师大学报(自然科学版). 2024(02): 129-139 .
    11. 刘革平,冉文妍,杨瑜颖,胡翰林. VR环境下认知追踪关键技术综述. 人工智能科学与工程. 2024(02): 1-17 .
    12. 王晓勇,胡胜利. 基于改进SMOTE算法和Ensemble模型的学习结果预测方法. 中北大学学报(自然科学版). 2024(03): 257-264 .
    13. 王晓兰,马泽娟,王惠中. 基于深度学习的电机故障诊断. 计算机与数字工程. 2024(05): 1536-1540 .
    14. 张凯,刘月,覃正楚,秦心怡. 迁移表征的知识追踪模型. 智能系统学报. 2024(04): 974-982 .
    15. 许嘉,唐嵘蓉,吕品,王宁. 基于学习迁移的稳定知识追踪模型. 华南师范大学学报(自然科学版). 2024(04): 68-79 .
    16. 冯余佳,孙厚举,余德. 基于学习者画像的个性化资源推荐系统研究. 电脑知识与技术. 2024(31): 12-14 .
    17. 程璐. 智慧煤矿下的设备故障诊断. 电子技术与软件工程. 2023(02): 77-80 .
    18. 苏庆,陈佳欣,黄鸿林,黄佃宽,何楚明. 基于深度知识追踪的个性化推荐编程实训系统建设与教学实践. 实验技术与管理. 2023(03): 206-211 .
    19. 张凯,秦心怡,况莹,覃正楚. 知识状态神经推理的知识追踪模型. 计算机应用研究. 2023(06): 1686-1691 .
    20. 李强,王彬彬,陈磊,冯辉. 基于认知诊断的两阶段试题推荐方法. 电脑知识与技术. 2023(13): 25-28 .
    21. 郭艺,何廷年,李爱斌,毛君宇. 融合GA-CART和Deep-IRT的知识追踪模型. 计算机工程与科学. 2023(09): 1691-1700 .
    22. 王全蕊,任建京,韩菲,谢鹏超,钦佳燕. 大数据视域下思政课教育教学过程中的深度学习知识追踪研究. 互联网周刊. 2023(20): 27-29 .
    23. 肖杨,冯军,钱亚冠,孙雨璐,毕云杉. 融合GRU和注意力机制的知识追踪优化模型研究. 浙江科技学院学报. 2023(05): 395-401+411 .
    24. 张凯,纪涛,况莹. 融合状态关系的知识追踪模型. 计算机应用研究. 2023(12): 3621-3627+3635 .
    25. 李浩君,方璇,戴海容. 基于自注意力机制和双向GRU神经网络的深度知识追踪优化模型. 计算机应用研究. 2022(03): 732-738 .
    26. 许嘉,韦婷婷,于戈,黄欣悦,吕品. 题目难度评估方法研究综述. 计算机科学与探索. 2022(04): 734-759 .
    27. 张凯,刘月,覃正楚,秦心怡. 概念表示增强的知识追踪模型. 计算机应用研究. 2022(11): 3309-3314 .
    28. 黄彩蝶,王昕萍,陈良育,刘勇. 基于堆叠门控循环单元残差网络的知识追踪模型研究. 华东师范大学学报(自然科学版). 2022(06): 68-78 .

    Other cited types(44)

Catalog

    Article views (387) PDF downloads (438) Cited by(72)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return