• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986
Citation: Hou Xin, Qu Guoyuan, Wei Dazhou, Zhang Jiacheng. A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training[J]. Journal of Computer Research and Development, 2022, 59(4): 882-893. DOI: 10.7544/issn1000-1239.20200986

A Lightweight UAV Object Detection Algorithm Based on Iterative Sparse Training

Funds: This work was supported by the National Key Basic Research and Development Program of China (2018YFC0809300, 2107YFB0202105, 2016YFB0200803, 2017YFB0202302), the National Natural Science Foundation of China (61972376), and the Beijing Natural Science Foundation (L182053).
More Information
  • Published Date: March 31, 2022
  • With the maturity of UAV (unmanned aerial vehicle) technology, vehicles equipped with cameras are widely used in various fields, such as security and surveillance, aerial photography and infrastructure inspection. It is important to automatically and efficiently analyze and understand the visual data collected from vehicles. The object detection algorithm based on deep convolutional neural network has made amazing achievements in many practical applications, but it is often accompanied by great resource consumption and memory occupation. Thus, it is challenging to run deep convolutional neural networks directly on embedded devices with limited computing power carried by vehicles, which leads to high latency. In order to meet these challenges, a novel pruning algorithm based on iterative sparse training is proposed to improve the computational effectiveness of the classic object detection network YOLOv3 (you only look once). At the same time, different data enhancement methods and related optimization means are combined to ensure that the precision error of the detector before and after compression is within an acceptable range. Experimental results indicate that the pruning scheme based on iterative sparse training proposed in this paper achieves a considerable compression rate of YOLOv3 within slightly decline in precision. The original YOLOv3 model contains 61.57 MB weights and requires 139.77GFLOPS(floating-point operations). With 98.72% weights and 90.03% FLOPS reduced, our model still maintains a decent accuracy, with only 2.0% mAP(mean average precision) loss, which provides support for real-time application of UAV object detection.
  • Cited by

    Periodical cited type(7)

    1. 董贤光,孙艳玲,代燕杰,邢宇,翟晓卉,孙凯,吕玉超,吴强,刘琚. 面向电能表检定流水线的轻量化目标检测算法. 数据采集与处理. 2025(02): 545-560 .
    2. 胡峻峰,李柏聪,朱昊,黄晓文. 改进YOLOv8的轻量化无人机目标检测算法. 计算机工程与应用. 2024(08): 182-191 .
    3. 孙雨含,朱振华,安宏宇,薛珊. 基于YOLOv5l_CA的无人机目标检测算法. 长春理工大学学报(自然科学版). 2024(04): 55-60 .
    4. 井庆龙,闵永智,李成学. 融合贝叶斯优化的轨面缺陷检测模型压缩方法. 兰州交通大学学报. 2024(05): 130-138 .
    5. 孙仁科,营鹏,李仲年,许新征. 基于轻量化SSD的弱小目标检测. 计算机仿真. 2024(10): 355-361 .
    6. 廖威,李光辉,代成龙,张飞飞. 引入余弦空间相关性的两阶段滤波器剪枝. 中国图象图形学报. 2024(12): 3628-3643 .
    7. 崔令飞,郭永红,修全发,史超,张硕阳. 基于国产嵌入式智能计算平台的无人机检测方法. 兵工学报. 2022(S1): 146-154 .

    Other cited types(7)

Catalog

    Article views (383) PDF downloads (436) Cited by(14)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return