• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Han Yanan, Liu Jianwei, Luo Xionglin. Research Progress of Continual Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1213-1239. DOI: 10.7544/issn1000-1239.20201058
Citation: Han Yanan, Liu Jianwei, Luo Xionglin. Research Progress of Continual Learning[J]. Journal of Computer Research and Development, 2022, 59(6): 1213-1239. DOI: 10.7544/issn1000-1239.20201058

Research Progress of Continual Learning

Funds: This work was supported by the Research Fund of China University of Petroleum(Beijing) (2462020YXZZ023).
More Information
  • Published Date: May 31, 2022
  • In recent years, with the continuous development of information technology, all kinds of data have shown explosive growth. Traditional machine learning algorithms can only achieve better performance when the distribution of testing data and training data is similar. In other words, it is impossible to continuously and adaptively learn in dynamic environment. However, this ability that can learn adaptively in dynamic environment is very important for any intelligent systems. Deep neural networks have shown the best learning ability in many applications. However, when we apply these methods to incrementally update the model parameters, the model would face catastrophic interference or forgetting problems, which can cause the model to forget the old knowledge after learning a new task. The research of continual learning alleviates this problem. Continual learning is a process of simulating brain learning. It learns continual non-independent and identically distributed data streams in a certain order, and incrementally updates the model according to the results of task. The significance of continual learning is to efficiently transform and use the knowledge that has been learned to complete the learning of new tasks, and to greatly reduce the problems caused by forgetting. The study of continuous learning is of great significance for intelligent computing systems to adaptively learn changes in the environment. In view of the application value, theoretical significance and future development potential of continual learning, the article systematically reviews the research progress of continual learning. Firstly, this paper outlines the definition of continual learning. Three typical continual learning models are introduced, namely learning without forgetting, elastic weight consolidation and gradient episodic memory. Then, the key problems and solutions of continual learning are also introduced. After that, the three types of methods based on regularization, dynamic framework, memory replay and complementary learning systems have been introduced. At last, this paper points out potential challenges and future directions in the field of continual learning.
  • Related Articles

    [1]Liu Zhuang, Dong Zichen, Dong Yilin, Shang Jiaming, Zhang Fan, Chen Yuran, Lou Peiyan, Sun Xinran, Wang Yu, Zhao Jun, Wayne Lin. Lifelong Graph Learning: A Comprehensive Review[J]. Journal of Computer Research and Development, 2024, 61(8): 2067-2096. DOI: 10.7544/issn1000-1239.202440204
    [2]Zhang Xiaoyu, Li Dongdong, Ren Pengjie, Chen Zhumin, Ma Jun, Ren Zhaochun. Memory Networks Based Knowledge-Aware Medical Dialogue Generation[J]. Journal of Computer Research and Development, 2022, 59(12): 2889-2900. DOI: 10.7544/issn1000-1239.20210851
    [3]Feng Xinyue, Yang Qiusong, Shi Lin, Wang Qing, Li Mingshu. Critical Memory Data Access Monitor Based on Dynamic Strategy Learning[J]. Journal of Computer Research and Development, 2019, 56(7): 1470-1487. DOI: 10.7544/issn1000-1239.2019.20180577
    [4]Zhang Mingzhe, Zhang Fa, Liu Zhiyong. A Survey on Architecture Research of Novel Non-Volatile Memory Based on Dynamical Trade-Off[J]. Journal of Computer Research and Development, 2019, 56(4): 677-691. DOI: 10.7544/issn1000-1239.2019.20170985
    [5]Hillel Avni, Wang Peng. Persistent Transactional Memory for Databases[J]. Journal of Computer Research and Development, 2018, 55(2): 305-318. DOI: 10.7544/issn1000-1239.2018.20170863
    [6]Wu Guoquan, He Meimei, Wei Jun, Zhong Hua, Huang Tao. Cross-Browser Issues Detection in JavaScript-Based Web Applications Based on Record/Replay[J]. Journal of Computer Research and Development, 2017, 54(3): 623-632. DOI: 10.7544/issn1000-1239.2017.20151051
    [7]Cai Wanwei, Tai Yunfang, Liu Qi, Zhang Ge. Memory Virtulization on MIPS Architecture[J]. Journal of Computer Research and Development, 2013, 50(10): 2247-2252.
    [8]Zeng Shuiling, Xu Weihong, Yang Jingyu. Fuzzy Associative Memories Based on Triangular Norms[J]. Journal of Computer Research and Development, 2013, 50(5): 998-1004.
    [9]Liu Lei, Huang He, Tang Zhimin. High Efficient Memory Race Recording Scheme for Parallel Program Deterministic Replay Under Multi-Core Architecture[J]. Journal of Computer Research and Development, 2012, 49(1): 64-75.
    [10]Tian Yongjun and Chen Songcan. Matrix-Pattern-Oriented Ho-Kashyap Classifier with Regularization Learning[J]. Journal of Computer Research and Development, 2005, 42(9): 1628-1632.
  • Cited by

    Periodical cited type(24)

    1. 许炜,李卓卓,方向阳. 多向度的数据分类分级:目标、逻辑与路径. 图书情报工作. 2025(01): 68-79 .
    2. 刘怀骏,徐劲松. 基于区块链和代理重加密的快递出海数据共享方案. 物流科技. 2025(03): 82-86 .
    3. 白久君,陈雪波,李大明,刘锐. 构建数字化未来:算网融合的战略应用与研究. 广播电视网络. 2025(02): 28-31 .
    4. 任静,李筱永,梁恒瑜,赵依凡,吴佼玥. 脑科学视角下经颅磁刺激治疗精神障碍的法律问题及对策研究. 中国全科医学. 2024(08): 1015-1020 .
    5. 薛俊伟,吴凯,周静. 耳机式物联网血氧监护系统的设计. 中国医学物理学杂志. 2024(01): 60-65 .
    6. 杨斌,王正阳,程梓航,赵慧英,王鑫,管宇,程新洲. 基于扩散模型生成数据重构的客户流失预测. 计算机研究与发展. 2024(02): 324-337 . 本站查看
    7. 李敏,肖迪,陈律君. 兼顾通信效率与效用的自适应高斯差分隐私个性化联邦学习. 计算机学报. 2024(04): 924-946 .
    8. 刘立. 大数据技术在中职计算机教学应用初探. 科技风. 2024(12): 64-66+167 .
    9. 孔庆苹. 大数据环境下物联网设备数据隐私保护研究. 无线互联科技. 2024(07): 116-118 .
    10. 徐帅. 数据隐私保护与法律责任:新形势下的挑战与应对. 法制博览. 2024(14): 95-97 .
    11. 张海霞. 安全路由协议综合交互信任评价及性能分析. 山西电子技术. 2024(03): 69-70+90 .
    12. 张世涛,祁舒慧. 社交媒体数据分析在市场审计中的运用. 赤峰学院学报(自然科学版). 2024(07): 30-32 .
    13. 张国业,郎雅婧. 科技支撑区域工业治理能力提升路向选择及发展布局. 现代工业经济和信息化. 2024(10): 246-248 .
    14. 李卓卓,刘子轶. 从分野到融合:多学科视角下的数据跨境研究综述. 情报杂志. 2024(12): 198-207 .
    15. 蒋雷,朱婷婷,汤海林. 大数据背景下塑料加工行业的数据安全与隐私保护. 塑料助剂. 2024(06): 78-82 .
    16. 苗权,张弛,房硕,刘季平. 我国数据跨境流动管理的创新实践和思考. 互联网天地. 2023(03): 49-52 .
    17. 冯凡. 大数据分析技术下的隐私保护. 数字通信世界. 2023(03): 142-145 .
    18. 赵静. 基于区块链技术及数据挖掘技术推进数字经济发展. 科技资讯. 2023(15): 36-39 .
    19. 王鹏涛,徐润婕. AIGC介入知识生产下学术出版信任机制的重构研究. 图书情报知识. 2023(05): 87-96 .
    20. 赵尔波,苏玉成,黄少远. 医院部署GCP远程监查的多级安全防护设计与实践. 中国卫生信息管理杂志. 2023(05): 709-714 .
    21. 张铠,汪希,黄晋. 基于混沌技术的多域物联网敏感数据安全传输方法. 信息与电脑(理论版). 2023(16): 232-234 .
    22. 王大阜,王静,石宇凯,邓志文,贾志勇. 基于深度迁移学习的图像隐私目标检测研究. 图学学报. 2023(06): 1112-1120 .
    23. 郭赟赟,于浩. 突破语言障碍:ChatGPT在多语言教育中的作用与影响. 郑州师范教育. 2023(06): 48-53 .
    24. 姚莉娟,廖冬琴. 基于隐私保护的高校大数据挖掘平台设计. 无线互联科技. 2023(23): 50-54 .

    Other cited types(28)

Catalog

    Article views (1915) PDF downloads (1153) Cited by(52)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return