• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Song, Hu Yanming, Hao Xiaohong, Zhang Liping, Hao Zhongxiao. Approximate k-Nearest Neighbor Query of High Dimensional Data Based on Dimension Grouping and Reducing[J]. Journal of Computer Research and Development, 2021, 58(3): 609-623. DOI: 10.7544/issn1000-1239.2021.20200285
Citation: Li Song, Hu Yanming, Hao Xiaohong, Zhang Liping, Hao Zhongxiao. Approximate k-Nearest Neighbor Query of High Dimensional Data Based on Dimension Grouping and Reducing[J]. Journal of Computer Research and Development, 2021, 58(3): 609-623. DOI: 10.7544/issn1000-1239.2021.20200285

Approximate k-Nearest Neighbor Query of High Dimensional Data Based on Dimension Grouping and Reducing

Funds: This work was supported by the National Natural Science Foundation of China (61872105), the Natural Science Foundation of Heilongjiang Province of China (LH2020F047), the Scientific Research Foundation for Returned Scholars Abroad of Heilongjiang Province of China (LC2018030), and the Technology Research Project of Heilongjiang Provincial Education Department (12531z004).
More Information
  • Published Date: February 28, 2021
  • Aiming at the problem that the existing high-dimensional space AkNN query algorithm does not consider the association relationship between dimensions when reducing the data dimensionality, we propose the method which groups the dimensions based on association rules between dimensions to reduce the data dimensionality first. The algorithm reduces the loss of data information by dividing the related dimensions into a group for dimensionality reduction. At the same time, in order to solve the problem of data offset caused by Hash reduction, the sign bits are set and the query result is refined based on the characteristics of the sign bits. To improve the efficiency of mining association rules between dimensions, a new frequent itemset mining algorithm based on the UFP-tree is proposed in this paper. In order to improve the efficiency of the AkNN query, we map the data into binary codes and query based on the codes. And the coding functions are filtered by information entropy to improve the coding quality. In the process of refining the query results, weights are dynamically set based on the information entropy of the encoded bits of the candidate set data, and the final AkNN results are returned by comparing the dynamic weighted Hamming distance and the number of sign bit collisions. Theoretical and experimental studies show that the proposed method can effectively deal with AkNN query problems in high-dimensional spaces.
  • Related Articles

    [1]Lin Fu, Li Mingkang, Luo Xuexiong, Zhang Shuhao, Zhang Yue, Wang Zitong. Anomaly-Aware Variational Graph Autoencoder Based Graph-Level Anomaly Detection Algorithm[J]. Journal of Computer Research and Development, 2024, 61(8): 1968-1981. DOI: 10.7544/issn1000-1239.202440177
    [2]Zhao Lei, Ji Boyan, Xing Wei, Lin Huaizhong, Lin Zhijie. Ancient Painting Inpainting Algorithm Based on Multi-Channel Encoder and Dual Attention[J]. Journal of Computer Research and Development, 2023, 60(12): 2814-2831. DOI: 10.7544/issn1000-1239.202220648
    [3]Chen Kejia, Lu Hao, Zhang Jiajun. Conditional Variational Time-Series Graph Auto-Encoder[J]. Journal of Computer Research and Development, 2020, 57(8): 1663-1673. DOI: 10.7544/issn1000-1239.2020.20200202
    [4]Lan Tian, Peng Chuan, Li Sen, Ye Wenzheng, Li Meng, Hui Guoqiang, Lü Yilan, Qian Yuxin, Liu Qiao. An Overview of Monaural Speech Denoising and Dereverberation Research[J]. Journal of Computer Research and Development, 2020, 57(5): 928-953. DOI: 10.7544/issn1000-1239.2020.20190306
    [5]Chen Yarui, Jiang Shuoran, Yang Jucheng, Zhao Tingting, Zhang Chuanlei. Mixture of Variational Autoencoder[J]. Journal of Computer Research and Development, 2020, 57(1): 136-144. DOI: 10.7544/issn1000-1239.2020.20190204
    [6]Xu Shaoping, Liu Tingyun, Luo Jie, Zhang Guizhen, Tang Yiling. An Image Quality-Aware Fast Blind Denoising Algorithm for Mixed Noise[J]. Journal of Computer Research and Development, 2019, 56(11): 2458-2468. DOI: 10.7544/issn1000-1239.2019.20180617
    [7]Mao Cunli, Yu Zhengtao, Shen Tao, Gao Shengxiang, Guo Jianyi, Xian Yantuan. A Kind of Nonferrous Metal Industry Entity Recognition Model Based on Deep Neural Network Architecture[J]. Journal of Computer Research and Development, 2015, 52(11): 2451-2459. DOI: 10.7544/issn1000-1239.2015.20140808
    [8]Chen Qiang, Zheng Yuhui, Sun Quansen, Xia Deshen. Patch Similarity Based Anisotropic Diffusion for Image Denoising[J]. Journal of Computer Research and Development, 2010, 47(1): 33-42.
    [9]Xu Long, Deng Lei, Peng Xiaoming, Ji Xiangyang, Gao Wen. The VLSI Design of AVS Entropy Coder[J]. Journal of Computer Research and Development, 2009, 46(5): 881-888.
    [10]Li Yingxin and Ruan Xiaogang. Feature Selection for Cancer Classification Based on Support Vector Machine[J]. Journal of Computer Research and Development, 2005, 42(10): 1796-1801.
  • Cited by

    Periodical cited type(10)

    1. 郜晨,何升,杭骁骞. 基于申威NMII的锁死故障监测与诊断. 计算机应用研究. 2024(04): 1015-1021 .
    2. 范国炜,吴涛,刘壮. 基于新一代神威天气和气候预测系统并行优化. 计算机仿真. 2023(12): 353-358 .
    3. 陈淑平,何王全,李祎,漆锋滨. InfiniBand中面向有限多播表条目数的多播路由算法. 计算机研究与发展. 2022(04): 864-881 . 本站查看
    4. 聂婕,左子杰,黄磊,王志刚,孙正雅,仲国强,王鑫,王玉成,刘安安,张弘,董军宇,魏志强. 面向海洋的多模态智能计算:挑战、进展和展望. 中国图象图形学报. 2022(09): 2589-2610 .
    5. 张绍晴,林璘,刘才力,杨光,王兆瑛,费云龙,任倩倩,苑诗敏,倪欣宁,王一帆,刘银杏,杨浩宇,任国志,荀皓,宋睿哲,蔡金卓,杨帆,刘博文,郭锦,陈玥,卢绿,李江玉,江应境,王雪,王凯迪,王振明,于洋洋,赵浩然,王静菊,马有为,任斯敏,雍建林. 地球系统数值模拟历史回顾及未来发展之机遇与挑战. 中国海洋大学学报(自然科学版). 2022(11): 1-12 .
    6. 陈淑平,李祎,何王全,漆锋滨. 胖树拓扑中高效实用的定制多播路由算法. 计算机研究与发展. 2022(12): 2689-2707 . 本站查看
    7. 朱雨,庞建民,徐金龙,陶小涵,王军. 面向SW26010处理器的三维Stencil自适应分块参数算法. 计算机科学. 2021(06): 10-18 .
    8. 范培勤,过武宏,韩梅,唐帅,张驰. 水声环境特征参数并行预报方法研究. 计算机工程与科学. 2021(11): 1920-1925 .
    9. 庄园,郭强,张洁,曾云辉. 大规模申威众核环境下二维数据计算的可扩展方法. 计算机科学. 2020(08): 87-92 .
    10. 姜尚志,唐生林,高希然,花嵘,陈莉,刘颖. “神威·太湖之光”上Tend_lin应用的并行优化研究. 计算机工程与科学. 2020(10): 1842-1851 .

    Other cited types(7)

Catalog

    Article views (605) PDF downloads (208) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return