• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Fu Zhangjie, Li Enlu, Cheng Xu, Huang Yongfeng, Hu Yuting. Recent Advances in Image Steganography Based on Deep Learning[J]. Journal of Computer Research and Development, 2021, 58(3): 548-568. DOI: 10.7544/issn1000-1239.2021.20200360
Citation: Fu Zhangjie, Li Enlu, Cheng Xu, Huang Yongfeng, Hu Yuting. Recent Advances in Image Steganography Based on Deep Learning[J]. Journal of Computer Research and Development, 2021, 58(3): 548-568. DOI: 10.7544/issn1000-1239.2021.20200360

Recent Advances in Image Steganography Based on Deep Learning

Funds: This work was supported by the National Natural Science Foundation of China (U1836110, 61602253, 61802058) and the Natural Science Foundation of Jiangsu Province (BK20200039).
More Information
  • Published Date: February 28, 2021
  • Image steganography is one of the research hotspots of information security. In the early stages of image steganography study, pixel modifications change the statistical properties of the image in a non-negligible way. So it is difficult to resist detection based on high-dimensional statistical characterization. With the development of deep learning, researchers have proposed a number of deep learning-based image steganography methods, which make image modification more imperceptible and the steganography process more intelligent. To further study image steganography technology, this paper provides a thorough review of the image steganography methods based on deep learning. First of all, according to the image steganography process, this paper profoundly analyzes the deep learning-based image steganography methods from three aspects. The first is to introduce the cover image acquisition methods from two perspectives: generative adversarial networks and adversarial samples. The second is to illustrate the steganographic distortion design methods. The third is to expound the methods of generating stego images based on the encoding-decoding network. In addition, the advantages and disadvantages of coverless image steganography are also discussed and summarized in this paper. This kind of method can achieve imperceptible steganography without the cover image, so it has inherent superiority in resisting steganalysis. Finally, we conclude the pros and cons of deep learning-based image steganography methods and coverless image steganography. On the basis of the analysis, we discuss and prospect the future research direction of image steganography.
  • Related Articles

    [1]Jiang Zetao, Huang Qinyang, Zhang Huijuan, Jin Xin, Huang Jingfan, Liao Peiqi. Unpaired Low-Light Image Enhancement Method Based on Global Consistency[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330904
    [2]Xue Zhihang, Xu Zheming, Lang Congyan, Feng Songhe, Wang Tao, Li Yidong. Text-to-Image Generation Method Based on Image-Text Semantic Consistency[J]. Journal of Computer Research and Development, 2023, 60(9): 2180-2190. DOI: 10.7544/issn1000-1239.202220416
    [3]Zhang Hao, Ma Jiayi, Fan Fan, Huang Jun, Ma Yong. Infrared and Visible Image Fusion Based on Multiclassification Adversarial Mechanism in Feature Space[J]. Journal of Computer Research and Development, 2023, 60(3): 690-704. DOI: 10.7544/issn1000-1239.202110639
    [4]Li Zituo, Sun Jianbin, Yang Kewei, Xiong Dehui. A Review of Adversarial Robustness Evaluation for Image Classification[J]. Journal of Computer Research and Development, 2022, 59(10): 2164-2189. DOI: 10.7544/issn1000-1239.20220507
    [5]Zhang Tian, Yang Kuiwu, Wei Jianghong, Liu Yang, Ning Yuanlong. Survey on Detecting and Defending Adversarial Examples for Image Data[J]. Journal of Computer Research and Development, 2022, 59(6): 1315-1328. DOI: 10.7544/issn1000-1239.20200777
    [6]Ding Xuyang, Xie Ying, Zhang Xiaosong. Evolutionary Multi-Objective Optimization Image Steganography Based on Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(11): 2260-2270. DOI: 10.7544/issn1000-1239.2020.20200437
    [7]Ren Weixiang, Zhai Liming, Wang Lina, Jia Ju. Reference Image Generation Algorithm for JPEG Image Steganalysis Based on Convolutional Neural Network[J]. Journal of Computer Research and Development, 2019, 56(10): 2250-2261. DOI: 10.7544/issn1000-1239.2019.20190386
    [8]Wang Lina, Wang Kaige, Xu Yibo, Tang Benxiao, Tan Xuanze. An Evaluation of Carrier Security for Image Steganography Based on Residual Co-Occurrence Probability[J]. Journal of Computer Research and Development, 2018, 55(12): 2664-2673. DOI: 10.7544/issn1000-1239.2018.20170757
    [9]Zhou Yucong, Liu Yi, Wang Rui. Training Deep Neural Networks for Image Applications with Noisy Labels by Complementary Learning[J]. Journal of Computer Research and Development, 2017, 54(12): 2649-2659. DOI: 10.7544/issn1000-1239.2017.20170637
    [10]Zhang Zhan, Liu Guangjie, Dai Yuewei, Wang Zhiquan. A Self-Adaptive Image Steganography Algorithm Based on Cover-Coding and Markov Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1668-1675.
  • Cited by

    Periodical cited type(10)

    1. 刘丽,侯海金,王安红,张涛. 基于多尺度注意力的生成式信息隐藏算法. 计算机应用. 2024(07): 2102-2109 .
    2. 董炜娜,刘佳,孙文权,陈立峰,潘晓中,柯彦. 基于隐式神经表示的模型隐写方案. 科学技术与工程. 2024(25): 10857-10865 .
    3. 叶学义,陈海颖,郭文风,陈华华,赵知劲. 全局协方差池化与多尺度特征融合的图像隐写检测. 传感技术学报. 2024(10): 1746-1753 .
    4. 田永波,易军凯. 图像隐写的大数据分析方法. 北京信息科技大学学报(自然科学版). 2024(05): 81-87 .
    5. 叶裴雷. 基于机器学习的恶意PNG图像识别方法. 信息记录材料. 2023(04): 169-173 .
    6. 刘海伦,张春玉,杜冠男. 基于图像的无载体信息隐藏技术研究. 软件. 2023(04): 16-19 .
    7. 杨盼,张敏情,葛虞,狄富强,张英男. 基于风格迁移过程的彩色图像信息隐藏算法. 计算机应用. 2023(06): 1730-1735 .
    8. 郭微光,李佳临,徐明迪. 基于统计特性的隐写密钥恢复方法. 计算机与数字工程. 2023(05): 1113-1119 .
    9. 叶学义,郭文风,曾懋胜,张珂绅,赵知劲. 基于多层感知卷积和通道加权的图像隐写检测. 电子与信息学报. 2022(08): 2949-2956 .
    10. 谭艳萍,罗永,张俊. 基于深度学习的数字图像隐写和隐写分析术研究概述. 现代信息科技. 2021(13): 68-72 .

    Other cited types(28)

Catalog

    Article views (2034) PDF downloads (1238) Cited by(38)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return