• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Mao Anqi, Tang Xiaochun, Ding Zhao, Li Zhanhuai. Scalability for Monolithic Schedulers of Cluster Resource Management Framework[J]. Journal of Computer Research and Development, 2021, 58(3): 497-512. DOI: 10.7544/issn1000-1239.2021.20200501
Citation: Mao Anqi, Tang Xiaochun, Ding Zhao, Li Zhanhuai. Scalability for Monolithic Schedulers of Cluster Resource Management Framework[J]. Journal of Computer Research and Development, 2021, 58(3): 497-512. DOI: 10.7544/issn1000-1239.2021.20200501

Scalability for Monolithic Schedulers of Cluster Resource Management Framework

Funds: This work was supported by the National Key Research and Development Program of China (2018YFB1003400).
More Information
  • Published Date: February 28, 2021
  • The significant advantages of monolithic cluster resource management system in ensuring the consistency of global resource status and applying multiple scheduling models make it widely used in actual systems. Howerver, the performance of the monolithic resource manager in a large cluster management environment does not meet expectations, because it uses a single node to maintain the global resource state. When the resource manager is receiving and processing large-scale periodic heartbeat information, the load pressure on the resource manager will increase sharply, which leads to a scalability bottleneck. In order to solve these problems, this paper proposes the idea of “no change, no update” to replace the periodic update mechanism of the resource manager. In our paper, we briefly summarize three main topics. Firstly, we introduce a differential-based heartbeat information processing model in the computing node. When the resource status of the computing node has not changed, it will not send the message to the resource manager, thereby reducing the size and number of messages. Secondly, we propose a ring network monitoring model between computing nodes. By adopting this mode, the periodic monitoring pressure can be transferred to the computing nodes. Finally, we implement these two models on YARN. After experimental verification, we can conclude that when the cluster reaches 10 000 nodes and the heartbeat interval is 3 s, the YARN based on our models increases the heartbeat information processing efficiency and resource update efficiency by about 40%. In addition, the scale of the cluster managed by improved YARN is more than 1.88 times that of the original YARN.
  • Related Articles

    [1]Jiang Zetao, Huang Qinyang, Zhang Huijuan, Jin Xin, Huang Jingfan, Liao Peiqi. Unpaired Low-Light Image Enhancement Method Based on Global Consistency[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330904
    [2]Xue Zhihang, Xu Zheming, Lang Congyan, Feng Songhe, Wang Tao, Li Yidong. Text-to-Image Generation Method Based on Image-Text Semantic Consistency[J]. Journal of Computer Research and Development, 2023, 60(9): 2180-2190. DOI: 10.7544/issn1000-1239.202220416
    [3]Zhang Hao, Ma Jiayi, Fan Fan, Huang Jun, Ma Yong. Infrared and Visible Image Fusion Based on Multiclassification Adversarial Mechanism in Feature Space[J]. Journal of Computer Research and Development, 2023, 60(3): 690-704. DOI: 10.7544/issn1000-1239.202110639
    [4]Li Zituo, Sun Jianbin, Yang Kewei, Xiong Dehui. A Review of Adversarial Robustness Evaluation for Image Classification[J]. Journal of Computer Research and Development, 2022, 59(10): 2164-2189. DOI: 10.7544/issn1000-1239.20220507
    [5]Zhang Tian, Yang Kuiwu, Wei Jianghong, Liu Yang, Ning Yuanlong. Survey on Detecting and Defending Adversarial Examples for Image Data[J]. Journal of Computer Research and Development, 2022, 59(6): 1315-1328. DOI: 10.7544/issn1000-1239.20200777
    [6]Ding Xuyang, Xie Ying, Zhang Xiaosong. Evolutionary Multi-Objective Optimization Image Steganography Based on Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(11): 2260-2270. DOI: 10.7544/issn1000-1239.2020.20200437
    [7]Ren Weixiang, Zhai Liming, Wang Lina, Jia Ju. Reference Image Generation Algorithm for JPEG Image Steganalysis Based on Convolutional Neural Network[J]. Journal of Computer Research and Development, 2019, 56(10): 2250-2261. DOI: 10.7544/issn1000-1239.2019.20190386
    [8]Wang Lina, Wang Kaige, Xu Yibo, Tang Benxiao, Tan Xuanze. An Evaluation of Carrier Security for Image Steganography Based on Residual Co-Occurrence Probability[J]. Journal of Computer Research and Development, 2018, 55(12): 2664-2673. DOI: 10.7544/issn1000-1239.2018.20170757
    [9]Zhou Yucong, Liu Yi, Wang Rui. Training Deep Neural Networks for Image Applications with Noisy Labels by Complementary Learning[J]. Journal of Computer Research and Development, 2017, 54(12): 2649-2659. DOI: 10.7544/issn1000-1239.2017.20170637
    [10]Zhang Zhan, Liu Guangjie, Dai Yuewei, Wang Zhiquan. A Self-Adaptive Image Steganography Algorithm Based on Cover-Coding and Markov Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1668-1675.
  • Cited by

    Periodical cited type(10)

    1. 刘丽,侯海金,王安红,张涛. 基于多尺度注意力的生成式信息隐藏算法. 计算机应用. 2024(07): 2102-2109 .
    2. 董炜娜,刘佳,孙文权,陈立峰,潘晓中,柯彦. 基于隐式神经表示的模型隐写方案. 科学技术与工程. 2024(25): 10857-10865 .
    3. 叶学义,陈海颖,郭文风,陈华华,赵知劲. 全局协方差池化与多尺度特征融合的图像隐写检测. 传感技术学报. 2024(10): 1746-1753 .
    4. 田永波,易军凯. 图像隐写的大数据分析方法. 北京信息科技大学学报(自然科学版). 2024(05): 81-87 .
    5. 叶裴雷. 基于机器学习的恶意PNG图像识别方法. 信息记录材料. 2023(04): 169-173 .
    6. 刘海伦,张春玉,杜冠男. 基于图像的无载体信息隐藏技术研究. 软件. 2023(04): 16-19 .
    7. 杨盼,张敏情,葛虞,狄富强,张英男. 基于风格迁移过程的彩色图像信息隐藏算法. 计算机应用. 2023(06): 1730-1735 .
    8. 郭微光,李佳临,徐明迪. 基于统计特性的隐写密钥恢复方法. 计算机与数字工程. 2023(05): 1113-1119 .
    9. 叶学义,郭文风,曾懋胜,张珂绅,赵知劲. 基于多层感知卷积和通道加权的图像隐写检测. 电子与信息学报. 2022(08): 2949-2956 .
    10. 谭艳萍,罗永,张俊. 基于深度学习的数字图像隐写和隐写分析术研究概述. 现代信息科技. 2021(13): 68-72 .

    Other cited types(28)

Catalog

    Article views (718) PDF downloads (305) Cited by(38)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return