• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Long Saiqin, Huang Jinna, Li Zhetao, Pei Tingrui, Xia Yuanqing. Energy Efficiency Evaluation Method of Data Centers for Cloud-Network Integration[J]. Journal of Computer Research and Development, 2021, 58(6): 1248-1260. DOI: 10.7544/issn1000-1239.2021.20201069
Citation: Long Saiqin, Huang Jinna, Li Zhetao, Pei Tingrui, Xia Yuanqing. Energy Efficiency Evaluation Method of Data Centers for Cloud-Network Integration[J]. Journal of Computer Research and Development, 2021, 58(6): 1248-1260. DOI: 10.7544/issn1000-1239.2021.20201069

Energy Efficiency Evaluation Method of Data Centers for Cloud-Network Integration

Funds: This work was supported by the National Key Research and Development Program of China (2018YFB1003702), the National Natural Science Foundation of China (62032020, 61502407, 62076214), the Hunan Provincial Natural Science Foundation of China for Distinguished Young Scholars (2018JJ1025), the Hunan Science and Technology Planning Project (2019RS3019, 2018TP1036), the Natural Science Foundation of Hunan Province of China (2019JJ50592), and the Science Research Foundation of Hunan Provincial Educational Department(18C0107).
More Information
  • Published Date: May 31, 2021
  • Cloud-network integration is developing at an accelerated pace, which not only promotes the rapid growth of data center scale, but also brings huge energy consumption. How to formulate reasonable data center energy efficiency evaluation standards has become a key issue that needs to be solved urgently to guide the improvement of data center energy efficiency. It is difficult to evaluate the energy efficiency of data centers comprehensively based on a single metric, and different data center energy efficiency metrics have their own focuses, and even contradict each other. It is proposed to integrate multiple metrics to evaluate the energy efficiency of data centers comprehensively. The model adopts a combination of subjective and objective weighting methods to set weights for different energy efficiency metrics. A multi-metric fusion evaluation strategy is designed based on the cloud model to obtain a more scientific and comprehensive data center energy efficiency evaluation result. Finally, the gray correlation method is proposed to analyze the relationship between the evaluation results and various energy efficiency metrics. The analysis results have important guiding significance for the improvement of data center energy efficiency.
  • Related Articles

    [1]Zhang Yuan, Cao Huawei, Zhang Jie, Shen Yue, Sun Yiming, Dun Ming, An Xuejun, Ye Xiaochun. Survey on Key Technologies of Graph Processing Systems Based on Multi-core CPU and GPU Platforms[J]. Journal of Computer Research and Development, 2024, 61(6): 1401-1428. DOI: 10.7544/issn1000-1239.202440073
    [2]Cao Kun, Long Saiqin, Li Zhetao. Lifetime-Driven OpenCL Application Scheduling on CPU-GPU MPSoC[J]. Journal of Computer Research and Development, 2023, 60(5): 976-991. DOI: 10.7544/issn1000-1239.202220700
    [3]Liao Xiaojian, Yang Zhe, Yang Hongzhang, Tu Yaofeng, Shu Jiwu. A Low-Latency Storage Engine with Low CPU Overhead[J]. Journal of Computer Research and Development, 2022, 59(3): 489-498. DOI: 10.7544/issn1000-1239.20210574
    [4]Xu Kunhao, Nie Tiezheng, Shen Derong, Kou Yue, Yu Ge. Parallel String Similarity Join Approach Based on CPU-GPU Heterogeneous Architecture[J]. Journal of Computer Research and Development, 2021, 58(3): 598-608. DOI: 10.7544/issn1000-1239.2021.20190567
    [5]Wang Qinglin, Li Dongsheng, Mei Songzhu, Lai Zhiquan, Dou Yong. Optimizing Winograd-Based Fast Convolution Algorithm on Phytium Multi-Core CPUs[J]. Journal of Computer Research and Development, 2020, 57(6): 1140-1151. DOI: 10.7544/issn1000-1239.2020.20200107
    [6]Zhang Qianlong, Hou Rui, Yang Sibo, Zhao Boyan, Zhang Lixin. The Role of Architecture Simulators in the Process of CPU Design[J]. Journal of Computer Research and Development, 2019, 56(12): 2702-2719. DOI: 10.7544/issn1000-1239.2019.20190044
    [7]Wu Linyang, Luo Rong, Guo Xueting, Guo Qi. Partitioning Acceleration Between CPU and DRAM: A Case Study on Accelerating Hash Joins in the Big Data Era[J]. Journal of Computer Research and Development, 2018, 55(2): 289-304. DOI: 10.7544/issn1000-1239.2018.20170842
    [8]Zhang Shuai, Li Tao, Jiao Xiaofan, Wang Yifeng, Yang Yulu. Parallel TNN Spectral Clustering Algorithm in CPU-GPU Heterogeneous Computing Environment[J]. Journal of Computer Research and Development, 2015, 52(11): 2555-2567. DOI: 10.7544/issn1000-1239.2015.20148151
    [9]Wang Kai, Hou Zifeng. An Idle Virtual CPU Scheduling Algorithm on Xen Virtual Machines[J]. Journal of Computer Research and Development, 2013, 50(11): 2429-2435.
    [10]Wang Kai, Hou Zifeng. A Relaxed Co-Scheduling Method of Virtual CPUs on Xen Virtual Machines[J]. Journal of Computer Research and Development, 2012, 49(1): 118-127.
  • Cited by

    Periodical cited type(2)

    1. 景超霞,刘杰,李洪奎,刘红海. NA-ROB:基于RISC-V超标量处理器的改进. 计算机应用研究. 2025(02): 519-522 .
    2. 王健,付志博,明哲. 可信执行环境的RISC-V架构处理器安全分区方法. 单片机与嵌入式系统应用. 2023(09): 16-19+23 .

    Other cited types(1)

Catalog

    Article views (521) PDF downloads (343) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return