• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Guo Juanjuan, Wang Qiongxiao, Xu Xin, Wang Tianyu, Lin Jingqiang. Secure Multiparty Computation and Application in Machine Learning[J]. Journal of Computer Research and Development, 2021, 58(10): 2163-2186. DOI: 10.7544/issn1000-1239.2021.20210626
Citation: Guo Juanjuan, Wang Qiongxiao, Xu Xin, Wang Tianyu, Lin Jingqiang. Secure Multiparty Computation and Application in Machine Learning[J]. Journal of Computer Research and Development, 2021, 58(10): 2163-2186. DOI: 10.7544/issn1000-1239.2021.20210626

Secure Multiparty Computation and Application in Machine Learning

Funds: This work was supported by the General Program of the National Natural Science Foundation of China (61772518).
More Information
  • Published Date: September 30, 2021
  • With the emergence and development of artificial intelligence and big data, large-scale data collection and analysis applications have been widely deployed, which introduces the concern of privacy leakage. This privacy concern further prevents data exchanges among originations and results in “data silos”. Secure multiparty computation (MPC) allows multiple originations to perform privacy-preserving collaborative data analytics, without leaking any plaintext data during the interactions, making the data “usable but not visible”. MPC technologies have been extensively studied in the academic and engineering fields, and derive various technical branches. Privacy-preserving machine learning (PPML) is becoming a typical and widely deployed application of MPC. And various PPML schemes have been proposed to perform privacy-preserving training and inference without leaking model parameters nor sensitive data. In this paper, we systematically analyze various MPC schemes and their applications in PPML. Firstly, we list various security models and objectives, and the development of MPC primitives (i.e., garble circuit, oblivious transfer, secret sharing and homomorphic encryption). Then, we summarize the strengths and weaknesses of these primitives, and list the corresponding appropriate usage scenarios, which is followed by the thorough analysis of their applications in PPML. Finally, we point out the further research direction on MPC and their applications in PPML.
  • Related Articles

    [1]Chen Zhenzhu, Zhou Chunyi, Su Mang, Gao Yansong, Fu Anmin. Research Progress of Secure Outsourced Computing for Machine Learning[J]. Journal of Computer Research and Development, 2023, 60(7): 1450-1466. DOI: 10.7544/issn1000-1239.202220767
    [2]Jin Ge, Wei Xiaochao, Wei Senmao, Wang Hao. FPCBC: Federated Learning Privacy Preserving Classification System Based on Crowdsourcing Aggregation[J]. Journal of Computer Research and Development, 2022, 59(11): 2377-2394. DOI: 10.7544/issn1000-1239.20220528
    [3]Yan Yunxue, Ma Ming, Jiang Han. An Efficient Privacy Preserving 4PC Machine Learning Scheme Based on Secret Sharing[J]. Journal of Computer Research and Development, 2022, 59(10): 2338-2347. DOI: 10.7544/issn1000-1239.20220514
    [4]Zhao Xiufeng, Fu Yu, Song Weitao. Circular Secure Homomorphic Encryption Scheme[J]. Journal of Computer Research and Development, 2020, 57(10): 2117-2124. DOI: 10.7544/issn1000-1239.2020.20200422
    [5]Wei Lifei, Chen Congcong, Zhang Lei, Li Mengsi, Chen Yujiao, Wang Qin. Security Issues and Privacy Preserving in Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(10): 2066-2085. DOI: 10.7544/issn1000-1239.2020.20200426
    [6]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [7]He Yingzhe, Hu Xingbo, He Jinwen, Meng Guozhu, Chen Kai. Privacy and Security Issues in Machine Learning Systems: A Survey[J]. Journal of Computer Research and Development, 2019, 56(10): 2049-2070. DOI: 10.7544/issn1000-1239.2019.20190437
    [8]Li Zengpeng, Ma Chunguang, Zhao Minghao. Leveled Fully Homomorphic Encryption Against Adaptive Key Recovery Attacks[J]. Journal of Computer Research and Development, 2019, 56(3): 496-507. DOI: 10.7544/issn1000-1239.2019.20170443
    [9]Xu Wenyu, Wu Lei, Yan Yunxue. Privacy-Preserving Scheme of Electronic Health Records Based on Blockchain and Homomorphic Encryption[J]. Journal of Computer Research and Development, 2018, 55(10): 2233-2243. DOI: 10.7544/issn1000-1239.2018.20180438
    [10]Chen Zhigang, Song Xinxia, Zhao Xiufeng. A Multi-Bit Fully Homomorphic Encryption with Better Key Size from LWE[J]. Journal of Computer Research and Development, 2016, 53(10): 2216-2223. DOI: 10.7544/issn1000-1239.2016.20160431
  • Cited by

    Periodical cited type(17)

    1. 龙春,李丽莎,李婧,杨帆,魏金侠,付豫豪. 机器学习安全推理研究综述. 数据与计算发展前沿(中英文). 2024(05): 1-12 .
    2. 韩益亮,宋超越,吴旭光,李鱼. 区块链与隐私计算融合技术综述. 科学技术与工程. 2024(28): 11945-11963 .
    3. 董建阔,黄跃花,付宇笙,肖甫,郑昉昱,林璟锵,董振江. 基于异构多核心GPU的高性能密码计算技术研究进展. 软件学报. 2024(12): 5582-5608 .
    4. 杨琴,石林,徐守坤,张华君. PrivCode:代码生成隐私保护策略. 计算机工程与设计. 2024(12): 3546-3552 .
    5. 吴伟宁,李宏博,黄建业,黄琼. 基于多方混淆电路的常数轮多方私有函数计算方案. 密码学报(中英文). 2024(06): 1331-1353 .
    6. 逯绍锋,胡玉龙,逯跃锋. 保护隐私的集合相似性度量协同计算协议. 计算机技术与发展. 2023(01): 137-143 .
    7. 于航,周继威,张涵,孔祥锋,张玉会. 面向风电场景的联邦学习平台高性能通信优化. 计算机系统应用. 2023(03): 116-124 .
    8. 唐敏,张宇浩,邓国强. 一种高效的非交互式隐私保护逻辑回归模型. 计算机工程. 2023(04): 32-42+51 .
    9. 刘远振,杨颜博,张嘉伟,李宝山,马建峰. 一种抗分布式机器学习恶意节点的区块链方案. 西安电子科技大学学报. 2023(02): 178-187 .
    10. 沈文旭,张继军,毛重. 基于两方安全计算的隐私保护逻辑回归方法. 吉林大学学报(理学版). 2023(03): 641-650 .
    11. 方兴. 金融行业数据安全应用路径与场景. 金融纵横. 2023(03): 81-86 .
    12. 杨小漫. 基于生命周期的大数据安全分析与探究. 电脑知识与技术. 2023(26): 87-91 .
    13. 彭金辉,雷宗华,张志鸿. ECDSA协同签名方案设计与实现. 信息安全研究. 2023(11): 1120-1130 .
    14. 孙钰,刘霏霏,李大伟,刘建伟. 联邦学习拜占庭攻击与防御研究综述. 网络空间安全科学学报. 2023(01): 17-37 .
    15. 魏啸磊,林苏,潘越,胡奇,夏天. 支持多数据源安全共享的分布式大数据协作系统研究. 计算机时代. 2022(06): 10-13 .
    16. 曹依然,朱友文,贺星宇,张跃. 效用优化的本地差分隐私集合数据频率估计机制. 计算机研究与发展. 2022(10): 2261-2274 . 本站查看
    17. 葛斌,吴彩,张天浩,沐李亭,夏晨星. 基于联邦学习的边缘计算隐私保护方法. 安徽理工大学学报(自然科学版). 2022(06): 79-86 .

    Other cited types(20)

Catalog

    Article views (2251) PDF downloads (1457) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return