• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ren Wei, Wang Zhigang, Yang Hua, Zhang Yisheng, Chen Ming. NeuroSymbolic Task and Motion Planner for Disassembly Electric Vehicle Batteries[J]. Journal of Computer Research and Development, 2021, 58(12): 2604-2617. DOI: 10.7544/issn1000-1239.2021.20211002
Citation: Ren Wei, Wang Zhigang, Yang Hua, Zhang Yisheng, Chen Ming. NeuroSymbolic Task and Motion Planner for Disassembly Electric Vehicle Batteries[J]. Journal of Computer Research and Development, 2021, 58(12): 2604-2617. DOI: 10.7544/issn1000-1239.2021.20211002

NeuroSymbolic Task and Motion Planner for Disassembly Electric Vehicle Batteries

Funds: This work was supported by 2021 High Quality Development Project of Ministry of Industry and Information Technology of China (TC210H02C).
More Information
  • Published Date: November 30, 2021
  • Establishing a perfect electric vehicle battery recycling system is one of the bottlenecks that need to be broken through in pursuit of high-quality development of new energy vehicles in our country. Disassembly technology will play an important role in research and development of intelligent, flexible, and refined high-efficiency. Due to its unstructured environment and high uncertainties, disassembling batteries is primarily accomplished by humans with a fixed robot-assisted battery disassembly workstation. This method is highly inefficient and in dire need of being upgraded to an automated and intelligent one to exempt humans from being exposed to the high voltage and toxic working conditions. The process of removing and sorting electric vehicle batteries represents a significant challenge to the automation industry since used batteries are of distinctive specifications that renders pre-programming impossible. A novel framework for NeuroSymbolic based task and motion planning method to automatically disassemble batteries in unstructured environment using robots is proposed. It enables robots to independently locate and loose battery bolts, with or without obstacles. This method has advantages in its autonomy, scalability, explicability, and learnability. These advantages pave the way for more accurate and robust system to disassemble electric vehicle battery packs using robots. This study not only provides a solution for intelligently disassembling electric vehicle batteries, but also verifies its feasibility through a set of test results with the robot accomplishing the disassemble task in a complex and dynamic environment.
  • Related Articles

    [1]Wang Yuanzheng, Sun Wenxiang, Fan Yixing, Liao Huaming, Guo Jiafeng. A Cross-Modal Entity Linking Model Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2025, 62(3): 662-671. DOI: 10.7544/issn1000-1239.202330731
    [2]Huang Hua, Bu Yifan, Xu Hongli, Wang Xiaorong. Point Cloud Segmentation Algorithm Based on Contrastive Learning and Label Mining[J]. Journal of Computer Research and Development, 2025, 62(1): 132-143. DOI: 10.7544/issn1000-1239.202330491
    [3]Yin Yuyu, Wu Guangqiang, Li Youhuizi, Wang Xinyu, Gao Honghao. A Machine Unlearning Method via Feature Constraint and Adaptive Loss Balance[J]. Journal of Computer Research and Development, 2024, 61(10): 2649-2661. DOI: 10.7544/issn1000-1239.202440476
    [4]Zhao Rongmei, Sun Siyu, Yan Fanli, Peng Jian, Ju Shenggen. Multi-Interest Aware Sequential Recommender System Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2024, 61(7): 1730-1740. DOI: 10.7544/issn1000-1239.202330622
    [5]Jiao Pengfei, Liu Huan, Lü Le, Gao Mengzhou, Zhang Jilin, Liu Dong. Globally Enhanced Heterogeneous Temporal Graph Neural Networks Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2023, 60(8): 1808-1821. DOI: 10.7544/issn1000-1239.202330226
    [6]Zhao Lei, Zhang Huiming, Xing Wei, Lin Zhijie, Lin Huaizhong, Lu Dongming, Pan Xun, Xu Duanqing. Image Cross-Domain Translation Algorithm Based on Self-Similarity and Contrastive Learning[J]. Journal of Computer Research and Development, 2023, 60(4): 930-946. DOI: 10.7544/issn1000-1239.202220039
    [7]Lu Shaoshuai, Chen Long, Lu Guangyue, Guan Ziyu, Xie Fei. Weakly-Supervised Contrastive Learning Framework for Few-Shot Sentiment Classification Tasks[J]. Journal of Computer Research and Development, 2022, 59(9): 2003-2014. DOI: 10.7544/issn1000-1239.20210699
    [8]Zhang Lingling, Chen Yiwei, Wu Wenjun, Wei Bifan, Luo Xuan, Chang Xiaojun, Liu Jun. Interpretable Few-Shot Learning with Contrastive Constraint[J]. Journal of Computer Research and Development, 2021, 58(12): 2573-2584. DOI: 10.7544/issn1000-1239.2021.20210999
    [9]Wang Jina, Chen Junhua, Gao Jianhua. ECC Multi-Label Code Smell Detection Method Based on Ranking Loss[J]. Journal of Computer Research and Development, 2021, 58(1): 178-188. DOI: 10.7544/issn1000-1239.2021.20190836
    [10]Xie Wenda, Qiu Junhong, and Wang Lei. A Practical and Efficient Contrast Enhancement Method[J]. Journal of Computer Research and Development, 2013, 50(4): 787-799.

Catalog

    Article views (503) PDF downloads (229) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return