• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Honglin, Yang Dan, Nie Tiezheng, Kou Yue. Attributed Heterogeneous Information Network Embedding with Self-Attention Mechanism for Product Recommendation[J]. Journal of Computer Research and Development, 2022, 59(7): 1509-1521. DOI: 10.7544/issn1000-1239.20210016
Citation: Wang Honglin, Yang Dan, Nie Tiezheng, Kou Yue. Attributed Heterogeneous Information Network Embedding with Self-Attention Mechanism for Product Recommendation[J]. Journal of Computer Research and Development, 2022, 59(7): 1509-1521. DOI: 10.7544/issn1000-1239.20210016

Attributed Heterogeneous Information Network Embedding with Self-Attention Mechanism for Product Recommendation

Funds: This work was supported by the National Natural Science Foundation of China (62072084, 62072086).
More Information
  • Published Date: June 30, 2022
  • Heterogeneous network embedding based recommendation technology has the capability to capture the structural information in the network effectively, thus improving the recommendation performance. However, the existing recommendation technology based on heterogeneous network embedding not only ignores the attribute information of nodes and various types of edge relations between nodes, but also ignores the diverse influences of different nodes’ attribute information on recommendation results. To address the above issues, a product recommendation framework based on attributed heterogeneous information network embedding with self-attention mechanism (AHNER) is proposed. The framework utilizes attributed heterogeneous information network embedding to learn the unified low-dimensional embedding representations of users and products. When learning node embedding representation, considering that different attribute information has different effects on recommendation results and different edge relations between nodes reflect users’ different preferences for products, self-attention mechanism is exploited to mine the latent information of node attribute information and different edge types and learn attribute embedding representation is learned. Meanwhile, in order to overcome the limitation of traditional dot product method as matching function, the framework also exploits deep neural network to learn more effective matching function to solve the recommendation problem. We conduct extensive experiments on three public datasets to evaluate the performance of AHNER. The experimental results reveal that AHNER is feasible and effective.
  • Related Articles

    [1]Qi Lei, Ren Zihao, Liu Junxi, Geng Xin. Person Re-identification Method Based on Hybrid Real-Synthetic Data[J]. Journal of Computer Research and Development, 2025, 62(2): 418-431. DOI: 10.7544/issn1000-1239.202330718
    [2]Gao Yujia, Wang Pengfei, Liu Liang, Ma Huadong. Personalized Federated Learning Method Based on Attention-Enhanced Meta-Learning Network[J]. Journal of Computer Research and Development, 2024, 61(1): 196-208. DOI: 10.7544/issn1000-1239.202220922
    [3]Zhang Wanli, Chen Yue, Yang Kuiwu, Zhang Tian, Hu Xuexian. An Adversarial Example Generation Method for Locally Occluded Face Recognition[J]. Journal of Computer Research and Development, 2023, 60(9): 2067-2079. DOI: 10.7544/issn1000-1239.202220474
    [4]Chen Liwen, Ye Feng, Huang Tianqiang, Huang Liqing, Weng Bin, Xu Chao, Hu Jie. An Unsupervised Person Re-Identification Method Based on Intra-/Inter-Camera Merger[J]. Journal of Computer Research and Development, 2023, 60(2): 415-425. DOI: 10.7544/issn1000-1239.202110732
    [5]Chu Zhen, Mi Qing, Ma Wei, Xu Shibiao, Zhang Xiaopeng. Part-Level Occlusion-Aware Human Pose Estimation[J]. Journal of Computer Research and Development, 2022, 59(12): 2760-2769. DOI: 10.7544/issn1000-1239.20210723
    [6]Hu Yu, Chen Xiaobo, Liang Jun, Chen Ling, Liang Shurong. Vehicle Re-Identification Method Based on Part Features and Multi-Attention Fusion[J]. Journal of Computer Research and Development, 2022, 59(11): 2497-2506. DOI: 10.7544/issn1000-1239.20210599
    [7]Lu Ping, Dong Husheng, Zhong Shan, Gong Shengrong. Person Re-identification by Cross-View Discriminative Dictionary Learning with Metric Embedding[J]. Journal of Computer Research and Development, 2019, 56(11): 2424-2437. DOI: 10.7544/issn1000-1239.2019.20180740
    [8]Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
    [9]Ding Zongyuan, Wang Hongyuan, Chen Fuhua, Ni Tongguang. Person Re-Identification Based on Distance Centralization and Projection Vectors Learning[J]. Journal of Computer Research and Development, 2017, 54(8): 1785-1794. DOI: 10.7544/issn1000-1239.2017.20170014
    [10]Chen Puqiang, Guo Lijun, Zhang Rong, Zhao Jieyu. Patch Matching with Global Spatial Constraints for Person Re-Identification[J]. Journal of Computer Research and Development, 2015, 52(3): 596-605. DOI: 10.7544/issn1000-1239.2015.20131481
  • Cited by

    Periodical cited type(5)

    1. 傅冰飞,陈同林,许枫,朱麟,李斌,薛向阳. 基于背景-前景组成式建模的电路板异常检测. 计算机研究与发展. 2025(01): 144-159 . 本站查看
    2. 孙留存,于龙,刘斌. 基于人工智能的电力巡检机器人网络故障自动化检测系统. 自动化与仪表. 2025(02): 63-65+72 .
    3. 薛泼. 发电厂智能化视频监控终端网络入侵检测研究. 电气技术与经济. 2025(02): 341-344 .
    4. 廖吟秋,王亚春. 基于cusum算法的电商直播信号异常波动特征建模. 自动化与仪器仪表. 2023(06): 54-57+62 .
    5. 杨亚琦,李博雄,杨东霞,刘燕. 基于信息熵的异常数据判别方法. 科学技术创新. 2023(24): 194-199 .

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return