• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wei Xueliang, Yang Mingshun, Feng Dan, Liu Jingning, Wu Bing, Xiao Renzhi, Tong Wei. Coordinated Metadata Management for Secure Persistent Memory[J]. Journal of Computer Research and Development, 2022, 59(11): 2437-2450. DOI: 10.7544/issn1000-1239.20210280
Citation: Wei Xueliang, Yang Mingshun, Feng Dan, Liu Jingning, Wu Bing, Xiao Renzhi, Tong Wei. Coordinated Metadata Management for Secure Persistent Memory[J]. Journal of Computer Research and Development, 2022, 59(11): 2437-2450. DOI: 10.7544/issn1000-1239.20210280

Coordinated Metadata Management for Secure Persistent Memory

Funds: This work was supported by the National Natural Science Foundation of China (61832007, 61821003, 61772222, U1705261), the Fundamental Research Funds for the Central Universities (2019kfyXMBZ037), the National Science and Technology Major Project (2017ZX01032-101), and the Open Project of Zhejiang Lab (2020AA3AB07).
More Information
  • Published Date: October 31, 2022
  • Non-volatile memory (NVM) is an emerging candidate for the next generation of main memory. Building persistent memory systems with NVM faces two challenges, including ensuring data security and optimizing write operations. Recent studies have proposed encryption and integrity verification techniques to protect in-memory data, and have proposed selective reencryption techniques to reduce write overhead. These techniques introduce various metadata that are stored in persistent memory. However, existing metadata management mechanisms only consider part of the metadata, which still causes significant metadata access overhead. To address the problem, we propose COTANA, a coordinated metadata management method for secure persistent memory. COTANA places the encryption and the selective reencryption metadata in the same metadata blocks, so that fetching the metadata for encryption/decryption needs only one read. COTANA builds an integrity tree on these metadata blocks, and places the message authentication codes (MAC) in an ECC chip to avoid extra access latency. Moreover, we observe that the bytes within a block have different modification frequencies for real-world workloads. Therefore, for selective reencryption, COTANA adopts a dynamic data partition scheme that dynamically chooses the partition methods with lowest bit flips. The methods include an existing successive partition method and a gathered partition method that is designed based on the modification frequencies. The evaluation results show that COTANA improves performance by up to 13.7%, and decreases bit flips by up to 21.3% compared with the state-of-the-art designs.
  • Related Articles

    [1]Li Yuxi, Chen Jingjing, Zhuo Fucai, Xu Jian, Ji Dong. Verifiable Boolean Searchable Encryption Based on Blockchain Index[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440501
    [2]Zhu Longlong, Chen Xiang, Chen Haodong, Niu Jitang, Liu Wenjing, Lin Shengrui, Zhang Dong, Wu Chunming. An Accurate Blockchain Anomaly Detection Mechanism Built on Approximate Sketch Algorithms[J]. Journal of Computer Research and Development, 2024, 61(10): 2526-2539. DOI: 10.7544/issn1000-1239.202440477
    [3]Ke Yuhong, Lin Chao, Huang Xinyi, Wu Wei, Chen Yujie. An Efficient Passwordless Authentication Scheme Based on Blockchain[J]. Journal of Computer Research and Development, 2024, 61(10): 2514-2525. DOI: 10.7544/issn1000-1239.202440468
    [4]Chen Xiao, Huang Muhong, Tian Yifan, Wang Yan, Cao Sheng, Zhang Xiaosong. Internet of Vehicles Data Sharing Scheme via Blockchain Sharding[J]. Journal of Computer Research and Development, 2024, 61(9): 2246-2260. DOI: 10.7544/issn1000-1239.202330899
    [5]He Yunhua, Luo Mingshun, Hu Qing, Wu Bin, Wang Chao, Xiao Ke. Research Progress on Security Technology for Cross-Chain Service of Energy Blockchain[J]. Journal of Computer Research and Development, 2024, 61(4): 1018-1037. DOI: 10.7544/issn1000-1239.202220892
    [6]Liu Wei, Tang Congke, Ma Jie, Tian Zhao, Wang Qi, She Wei. A Federated Learning Model for Privacy Protection Based on Blockchain and Dynamic Evaluation[J]. Journal of Computer Research and Development, 2023, 60(11): 2583-2593. DOI: 10.7544/issn1000-1239.202330269
    [7]Zhang Zelin, Wang Huaqun. Dynamic Key Management of Industrial Internet Based on Blockchain[J]. Journal of Computer Research and Development, 2023, 60(2): 386-397. DOI: 10.7544/issn1000-1239.202111095
    [8]Gao Wei, Chen Liqun, Tang Chunming, Zhang Guoyan, Li Fei. One-Time Chameleon Hash Function and Its Application in Redactable Blockchain[J]. Journal of Computer Research and Development, 2021, 58(10): 2310-2318. DOI: 10.7544/issn1000-1239.2021.20210653
    [9]Huang Kezhen, Lian Yifeng, Feng Dengguo, Zhang Haixia, Liu Yuling, Ma Xiangliang. Cyber Security Threat Intelligence Sharing Model Based on Blockchain[J]. Journal of Computer Research and Development, 2020, 57(4): 836-846. DOI: 10.7544/issn1000-1239.2020.20190404
    [10]Liu Yining, Zhou Yuanjian, Lan Rushi, Tang Chunming. Blockchain-Based Verification Scheme for Deletion Operation in Cloud[J]. Journal of Computer Research and Development, 2018, 55(10): 2199-2207. DOI: 10.7544/issn1000-1239.2018.20180436
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (137) PDF downloads (67) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return