• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
Citation: Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192

State-of-the-Art Survey on Edge Intelligence

Funds: This work was supported by the National Key Research and Development Program of China (2019YFB2102400), the Hebei Provincial High-Level Talent Funding Project (B202003027), and the Tianjin Research Innovation Project for Postgraduate Students (2021YJSO2S04).
More Information
  • Author Bio:

    Zhang Xiaodong: born in 1998. Master candidate. Her main research interests include edge computing and Internet of vehicles

    Zhang Chaokun: born in 1981. PhD, associate professor, master supervisor. Senior member of CCF. His main research interests include next generation Internet, edge computing, and Internet of things

    Zhao Jijun: born in 1970. PhD, professor, PhD supervisor. Senior member of CCF. His main research interests include broadband communication network and Internet of things

  • Received Date: March 06, 2022
  • Revised Date: February 26, 2023
  • Available Online: September 19, 2023
  • From smart terminal devices such as smart phones and smart watches, to large-scale intelligent applications, such as smart homes, Internet of vehicles, intelligent life and intelligent agriculture. Artificial intelligence (AI) has gradually entered and changed the life of human being. In this context, various of intelligent devices have produced massive amount of data, making traditional cloud computing paradigm unable to adapt to the unprecedented challenge. Instead, edge computing which aims to process the data at the edge of the network has the great potential to reduce latency and bandwidth pressure, as well as protect data privacy and security. Building AI models upon edge computing architecture, training and inferring the model, realizing the intelligence of the edge are crucial to the current social. As a result, a new interdisciplinary field, edge intelligence (EI), has begun to attract widespread attention. We make a comprehensive study on EI. Specifically, firstly introduce the basic knowledge of edge computing and AI, which leads to the background, motivation and challenges of EI. Secondly, the research on EI related technologies is discussed from three aspects, namely, the problems, the models and the algorithm. Further, the typical security problems in EI are introduced. Next, the applications of EI are described from three aspects of intelligent industry, intelligent life and intelligent agriculture. Finally, we propose the direction and prospect of EI in the future development.

  • [1]
    Cisco U. Cisco annual internet report, 2018—2023, white paper, [EB/OL]. 2020[2022-02-19]. https://www.cisco.com/c/en/us/solutions/colla teral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
    [2]
    Shepherd J, Burian S. Detection of urban-induced rainfall anomalies in a major coastal city[J]. Earth Interactions, 2003, 7(4): 1−17 doi: 10.1175/1087-3562(2003)007<0001:DOUIRA>2.0.CO;2
    [3]
    施巍松,孙辉,曹杰,等. 边缘计算:万物互联时代新型计算模型[J]. 计算机研究与发展,2017,54(5):907−924 doi: 10.7544/issn1000-1239.2017.20160941

    Shi Weisong, Sun Hui, Cao Jie, et al. Edge computing—An emerging computing model for the Internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907−924 (in Chinese) doi: 10.7544/issn1000-1239.2017.20160941
    [4]
    Patel M, Naughton B, Chan C, et al. Mobile-edge computing—Introductory technical white paper[J]. White Paper, Mobile-edge Computing Industry Initiative, 2014, 29: 854−864
    [5]
    Shi Weisong, Cao Jie, Zhang Quan, et al. Edge computing: Vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637−646 doi: 10.1109/JIOT.2016.2579198
    [6]
    施巍松,张星洲,王一帆,等. 边缘计算:现状与展望[J]. 计算机研究与发展,2019,56(1):69−89 doi: 10.7544/issn1000-1239.2019.20180760

    Shi Weisong, Zhang Xingzhou, Wang Yifan, et al. Edge computing: State-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69−89 (in Chinese) doi: 10.7544/issn1000-1239.2019.20180760
    [7]
    Wang Xiaofei, Han Yiwen, Leung V, et al. Convergence of edge computing and deep learning: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 869−904
    [8]
    Zhou Zhi, Chen Xu, Li En, et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1738−1762 doi: 10.1109/JPROC.2019.2918951
    [9]
    Plastiras G, Terzi M, Kyrkou C, et al. Edge intelligence: Challenges and opportunities of near-sensor machine learning applications[C/OL] //Proc of the 29th Int Conf on Application Specific Systems, Architectures and Processors (ASAP). Piscataway, NJ: IEEE, 2018[2022-02-19]. https://ieee xplore.ieee.org/abstract/document/8445118
    [10]
    Rausch T, Dustdar S. Edge intelligence: The convergence of humans, things, and AI[C] //Proc of the 2019 IEEE Int Conf on Cloud Engineering (IC2E). Piscataway, NJ: IEEE, 2019: 86−96
    [11]
    Parekh B, Amin K. Edge intelligence: A robust reinforcement of edge computing and artificial intelligence[C] //Proc of Innovations in Information and Communication Technologies (IICT-2020). Berlin: Springer, 2021: 461−468
    [12]
    Munir A, Blasch E, Kwon J, et al. Artificial intelligence and data fusion at the edge[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(7): 62−78 doi: 10.1109/MAES.2020.3043072
    [13]
    Dillon T, Wu Chen, Chang E. Cloud computing: Issues and challenges [C] //Proc of the 24th IEEE Int Conf on Advanced Information Networking and Applications. Piscataway, NJ: IEEE, 2010: 27−33
    [14]
    Khan W, Ahmed E, Hakak S, et al. Edge computing: A survey[J]. Future Generation Computer Systems, 2019, 97: 219−235 doi: 10.1016/j.future.2019.02.050
    [15]
    Xu Dianlei, Li Tong, Li Yong, et al. Edge intelligence: Empowering intelligence to the edge of network[J]. Proceedings of the IEEE, 2021, 109(11): 1778−1837 doi: 10.1109/JPROC.2021.3119950
    [16]
    Yi Shanhe, Hao Zijiang, Qin Zhengrui, et al. Fog computing: Platform and applications[C] //Proc of the 3rd IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb). Piscataway, NJ: IEEE, 2015: 73−78
    [17]
    Meng Jiaying, Tan Haisheng, Xu Chao, et al. Dedas: Online task dispatching and scheduling with bandwidth constraint in edge computing[C] //Proc of IEEE Conf on Computer Communications (INFOCOM 2019). Piscataway, NJ: IEEE, 2019: 2287−2295
    [18]
    Sun Yaping, Chen Zhiyong, Tao Meixia, et al. Bandwidth gain from mobile edge computing and caching in wireless multicast systems[J]. IEEE Transactions on Wireless Communications, 2020, 19(6): 3992−4007 doi: 10.1109/TWC.2020.2979147
    [19]
    Xu Xiaolong, Xue Yuan, Qi Lianyong, et al. An edge computing-enabled computation offloading method with privacy preservation for Internet of connected vehicles[J]. Future Generation Computer Systems, 2019, 96: 89−100 doi: 10.1016/j.future.2019.01.012
    [20]
    林永青. 人工智能起源处的“群星”[J]. 金融博览,2017(5):46−47 doi: 10.3969/j.issn.1673-4882.2017.05.021

    Lin Yongqing. "Stars" at the origin of artificial intelligence[J]. Financial View, 2017(5): 46−47 (in Chinese) doi: 10.3969/j.issn.1673-4882.2017.05.021
    [21]
    崔雍浩,商聪,陈锶奇,等. 人工智能综述:AI的发展[J]. 无线电通信技术,2019,45(3):225−231 doi: 10.3969/j.issn.1003-3114.2019.03.01

    Cui Yonghao, Shang Cong, Chen Siqi, et al. Overview of artificial intelligence: The development of AI[J]. Radio Communication Technology, 2019, 45(3): 225−231 (in Chinese) doi: 10.3969/j.issn.1003-3114.2019.03.01
    [22]
    Qiu Junfei, Wu Qihui, Ding Guoru, et al. A survey of machine learning for big data processing[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 1−16 doi: 10.1186/s13634-015-0293-z
    [23]
    Adam B, Smith I. Reinforcement learning for structural control[J]. Journal of Computing in Civil Engineering, 2008, 22(2): 133−139 doi: 10.1061/(ASCE)0887-3801(2008)22:2(133)
    [24]
    Arulkumaran K, Deisenroth M P, Brundage M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26−38 doi: 10.1109/MSP.2017.2743240
    [25]
    LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436−444 doi: 10.1038/nature14539
    [26]
    Pouyanfar S, Sadiq S, Yan Yilin, et al. A survey on deep learning: Algorithms, techniques, and applications[J]. ACM Computing Surveys, 2018, 51(5): 1−36
    [27]
    McCulloch W, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115−133 doi: 10.1007/BF02478259
    [28]
    Fukushima K, Miyake S, Ito T. Neocognitron: A neural network model for a mechanism of visual pattern recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983(5): 826−834
    [29]
    Jordan M. Serial Order: A Parallel Distributed Processing Approach[M] //Advances in Psychology. Amsterdam: Elsevier, 1997: 471−495
    [30]
    Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527−1554 doi: 10.1162/neco.2006.18.7.1527
    [31]
    Jia Yangqing, Shelhamer E, Donahue J, et al. Caffe: Convolutional architecture for fast feature embedding[C] //Proc of the 22nd ACM Int Conf on Multimedia. New York: ACM, 2014: 675−678
    [32]
    Parvat A, Chavan J, Kadam S, et al. A survey of deep-learning frameworks[C/OL] //Proc of the 2017 Int Conf on Inventive Systems and Control (ICISC). Piscataway, NJ: IEEE, 2017[2022-02-19]. https://ieeexplore.ieee. org/abstract/document/8068684
    [33]
    Abadi M. TensorFlow: Learning functions at scale[C/OL] //Proc of the 21st ACM SIGPLAN Int Conf on Functional Programming. New York: ACM, 2016[2022-02-19]. https://dl.acm.org/doi/abs/10.1145/2951913.2976746
    [34]
    Qiu Chao, Wang Xiaofei, Yao Haipeng, et al. Bring intelligence among edges: A blockchain-assisted edge intelligence approach[C/OL] //Proc of IEEE Global Communications Conf (GLOBECOM 2020). Piscataway, NJ: IEEE, 2020[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9348271
    [35]
    Babu B, Jayashree N. Edge intelligence models for industrial IoT (IIoT)[J]. RV Journal of Science Technology Engineering Arts and Management, 2020, 1: 5−17
    [36]
    Wang Xiaofei, Han Yiwen, Wang Chenyang, et al. In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning[J]. IEEE Network, 2019, 33(5): 156−165 doi: 10.1109/MNET.2019.1800286
    [37]
    Wang Zhiyuan, Xu Hongli, Liu Jianchun, et al. Resource-efficient federated learning with hierarchical aggregation in edge computing[C/OL] //Proc of IEEE Conf on Computer Communications (INFOCOM 2021). Piscataway, NJ. IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstra ct/document/9488756
    [38]
    Nguyen D, Ding Ming, Pham Q, et al. Federated learning meets blockchain in edge computing: Opportunities and challenges[J]. IEEE Internet of Things Journal, 2021, 8(1): 12806−12825
    [39]
    Deng Shuiguang, Zhao Hailiang, Fang Weijia, et al. Edge intelligence: The confluence of edge computing and artificial intelligence[J]. IEEE Internet of Things Journal, 2020, 7(8): 7457−7469 doi: 10.1109/JIOT.2020.2984887
    [40]
    Qu Guanjin, Wu Huaming, Li Ruidong, et al. DMRO: A deep meta reinforcement learning-based task offloading framework for edge-cloud computing[J]. IEEE Transactions on Network and Service Management, 2021, 18(3): 3448−3459 doi: 10.1109/TNSM.2021.3087258
    [41]
    Tang Ming, Wong V. Deep reinforcement learning for task offloading in mobile edge computing systems[J/OL]. IEEE Transactions on Mobile Computing, 2020[2022-02-19]. https://ieeexplore.ieee.org/abstract/docume nt/9253665
    [42]
    Zhang Ke, Zhu Yongxu, Leng Supeng, et al. Deep learning empowered task offloading for mobile edge computing in urban informatics[J]. IEEE Internet of Things Journal, 2019, 6(5): 7635−7647 doi: 10.1109/JIOT.2019.2903191
    [43]
    Deng Xiaoheng, Yin Jian, Guan Peiyuan, et al. Intelligent delay-aware partial computing task offloading for multi-user industrial Internet of things through edge computing[J/OL]. IEEE Internet of Things Journal, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9590527
    [44]
    Wu Huaming, Zhang Ziru, Guan Chang, et al. Collaborate edge and cloud computing with distributed deep learning for smart city Internet of things[J]. IEEE Internet of Things Journal, 2020, 7(9): 8099−8110 doi: 10.1109/JIOT.2020.2996784
    [45]
    Huang Hui, Ye Qiang, Du Hongwei. Reinforcement learning based offloading for realtime applications in mobile edge computing [C/OL] //Proc of IEEE Int Conf on Communications (ICC 2020). Piscataway, NJ: IEEE, 2020[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9148748
    [46]
    Wang Jiadai, Zhao Lei, Liu Jiajia, et al. Smart resource allocation for mobile edge computing: A deep reinforcement learning approach[J]. IEEE Transactions on Emerging Topics in Computing, 2019, 9(3): 1529−1541
    [47]
    He Ying, Wang Yuhang, Qiu Chao, et al. Blockchain-based edge computing resource allocation in IoT: A deep reinforcement learning approach[J]. IEEE Internet of Things Journal, 2020, 8(4): 2226−2237
    [48]
    Dai Yueyue, Zhang Ke, Maharjan S, et al. Edge intelligence for energy-efficient computation offloading and resource allocation in 5G beyond[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 12175−12186 doi: 10.1109/TVT.2020.3013990
    [49]
    Lin Zehong, Bi Suzhi, Zhang Yingjun. Optimizing AI service placement and resource allocation in mobile edge intelligence systems[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7257−7271 doi: 10.1109/TWC.2021.3081991
    [50]
    Yu Zhengxin, Hu Jia, Min Geyong, et al. Mobility-aware proactive edge caching for connected vehicles using federated learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 5341−5351
    [51]
    Zhang Ke, Leng Supeng, He Yejun, et al. Cooperative content caching in 5G networks with mobile edge computing[J]. IEEE Wireless Communications, 2018, 25(3): 80−87 doi: 10.1109/MWC.2018.1700303
    [52]
    Ning Zhaolong, Zhang Kaiyuan, Wang Xiaojie, et al. Joint computing and caching in 5G-envisioned Internet of vehicles: A deep reinforcement learning-based traffic control system[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 5201−5212
    [53]
    Ning Zhaolong, Zhang Kaiyuan, Wang Xiaojie, et al. Intelligent edge computing in Internet of vehicles: A joint computation offloading and caching solution[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4): 2212−2225
    [54]
    Ndikumana A, Tran N, Kim K, et al. Deep learning based caching for self-driving cars in multi-access edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(5): 2862−2877
    [55]
    Zhang Ran, Yu F, Liu Jiang, et al. Deep reinforcement learning (DRL)-based device-to-device caching with blockchain and mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6469−6485 doi: 10.1109/TWC.2020.3003454
    [56]
    Dai Penglin, Hu Kaiwen, Wu Xiao, et al. Asynchronous deep reinforcement learning for data-driven task offloading in MEC-empowered vehicular networks [C/OL] //Proc of IEEE Conf on Computer Communications (INFOCOM 2021). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/document/9488886
    [57]
    Mukherjee M, Kumar V, Lat A, et al. Distributed deep learning-based task offloading for UAV-enabled mobile edge computing[C] //Proc of IEEE Conf on Computer Communications Workshops (INFOCOM 2020). Piscataway, NJ: IEEE, 2020: 1208−1212
    [58]
    Liu Xianming, Zhang Chaokun, He Shen. Adaptive task offloading for mobile aware applications based on deep reinforcement learning[C] //Proc of the 19th Int Conf on mobile Ad Hoc and Smart Systems (MASS). Piscataway, NJ: IEEE, 2022, accepted
    [59]
    Mohammed T, Joe-Wong C, Babbar R, et al. Distributed inference acceleration with adaptive DNN partitioning and offloading [C] //Proc of the IEEE Conf on Computer Communications (INFOCOM 2020). Piscataway, NJ: IEEE, 2020: 854−863
    [60]
    Zhou Zhenyu, Wang Zhao, Yu Haijun, et al. Learning-based URLLC-aware task offloading for Internet of health things[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(2): 396−410
    [61]
    Tang Xin, Chen Xu, Zeng Liekang, et al. Joint multiuser DNN partitioning and computational resource allocation for collaborative edge intelligence[J]. IEEE Internet of Things Journal, 2020, 8(12): 9511−9522
    [62]
    Liu Yi, Yu Huimin, Xie Shengli, et al. Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 11158−11168 doi: 10.1109/TVT.2019.2935450
    [63]
    Liao Haijun, Zhou Zhenyu, Zhao Xiongwen, et al. Learning-based context-aware resource allocation for edge-computing-empowered industrial IoT[J]. IEEE Internet of Things Journal, 2019, 7(5): 4260−4277
    [64]
    Guo Fengxian, Yu F, Zhang Heli, et al. Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2019, 19(3): 1689−1703
    [65]
    Dai Yueyue, Xu Du, Maharjan S, et al. Artificial intelligence empowered edge computing and caching for Internet of vehicles[J]. IEEE Wireless Communications, 2019, 26(3): 12−18 doi: 10.1109/MWC.2019.1800411
    [66]
    Qiao Guanhua, Leng Supeng, Maharjan S, et al. Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2019, 7(1): 247−257
    [67]
    Ale L, Zhang Ning, Wu Huici, et al. Online proactive caching in mobile edge computing using bidirectional deep recurrent neural network[J]. IEEE Internet of Things Journal, 2019, 6(3): 5520−5530 doi: 10.1109/JIOT.2019.2903245
    [68]
    Khan L U, Yaqoob I, Tran N H, et al. Edge-computing-enabled smart cities: A comprehensive survey[J]. IEEE Internet of Things Journal, 2020, 7(10): 10200−10232 doi: 10.1109/JIOT.2020.2987070
    [69]
    Nakahara M, Hisano D, Nishimura M, et al. Retransmission edge computing system conducting adaptive image compression based on image recognition accuracy[C/OL] //Proc of the 94th IEEE Vehicular Technology Conf (VTC2021-Fall). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://iee explore.ieee.org/document/9625464
    [70]
    Muhammad G, Hossain M. Emotion recognition for cognitive edge computing using deep learning[J]. IEEE Internet of Things Journal, 2021, 8(23): 16894−16901 doi: 10.1109/JIOT.2021.3058587
    [71]
    Shen Tao, Gao Chan, Xu Dawei. The analysis of intelligent real-time image recognition technology based on mobile edge computing and deep learning[J]. Journal of Real-Time Image Processing, 2021, 18(4): 1157−1166 doi: 10.1007/s11554-020-01039-x
    [72]
    Monburinon N, Zabir S, Vechprasit N, et al. A novel hierarchical edge computing solution based on deep learning for distributed image recognition in IoT systems[C] //Proc of the 4th Int Conf on Information Technology (InCIT). Piscataway, NJ: IEEE, 2019: 294−299
    [73]
    Wu Juan. English real-time speech recognition based on hidden markov and edge computing model[C] //Proc of the 3rd Int Conf on Inventive Research in Computing Applications (ICIRCA). Piscataway, NJ: IEEE, 2021: 376−379
    [74]
    Xu Yunwei. Research on business English translation architecture based on artificial intelligence speech recognition and edge computing[J/OL]. Wireless Communications and Mobile Computing, 2021[2022-02-19]. https://www.hindawi.com/journals/wcmc/2021/5518868/
    [75]
    Cheng Shitong, Xu Zhenghui, Li Xiuhua, et al. Task Offloading for automatic speech recognition in edge-cloud computing based mobile networks[C/OL] //Proc of IEEE Symp on Computers and Communications (ISCC). Piscataway, NJ: IEEE, 2020[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9219579
    [76]
    Zeng Xiao, Fang Biyi, Shen Haichen, et al. Distream: Scaling live video analytics with workload-adaptive distributed edge intelligence [C] //Proc of the 18th Conf on Embedded Networked Sensor Systems. New York: ACM, 2020: 409−421
    [77]
    Rocha N, Silva T, Batista T, et al. Leveraging edge intelligence for video analytics in smart city applications [J]. Information, 2021, 12(1): 14
    [78]
    Zhang Xingzhou, Wang Yifan, Lu Sidi, et al. OpenEI: An open framework for edge intelligence[C] //Proc of the 39th IEEE Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2019: 1840−1851
    [79]
    Li En, Zeng Liekang, Zhou Zhi, et al. Edge AI: On-demand accelerating deep neural network inference via edge computing[J]. IEEE Transactions on Wireless Communications, 2019, 19(1): 447−457
    [80]
    Erfanian A, Amirpour H, Tashtarian F, et al. LwTE-Live: Light-weight transcoding at the edge for live streaming[C] //Proc of the Workshop on Design, Deployment, and Evaluation of Network-assisted Video Streaming. New York: ACM, 2021: 22−28
    [81]
    Jin Yibo, Jiao Lei, Qian Zhuzhong, et al. Learning for Learning: Predictive online control of federated learning with edge provisioning [C/OL] //Proc of the IEEE Conf on Computer Communications (INFOCOM 2021). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstra ct/document/9488733
    [82]
    Zhang D, Kou Ziyi, Wang Dong. Fedsens: A federated learning approach for smart health sensing with class imbalance in resource constrained edge computing[C/OL] //Proc of the IEEE Conf on Computer Communications (INFOCOM 2021). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/document/9488776
    [83]
    Wang Shuangguang, Guo Yan, Zhang Ning, et al. Delay-aware microservice coordination in mobile edge computing: A reinforcement learning approach[J]. IEEE Transactions on Mobile Computing, 2019, 20(3): 939−951
    [84]
    Bahreini T, Badri H, Grosu D. Mechanisms for resource allocation and pricing in mobile edge computing systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 33(3): 667−682
    [85]
    Tran T, Pompili D. Adaptive bitrate video caching and processing in mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2018, 18(9): 1965−1978
    [86]
    Xing Hong, Liu Liang, Xu Jie, et al. Joint task assignment and resource allocation for D2D-enabled mobile-edge computing[J]. IEEE Transactions on Communications, 2019, 67(6): 4193−4207 doi: 10.1109/TCOMM.2019.2903088
    [87]
    Zhang Chaokun, Zheng Rong, Cui Yong, et al. Delay-sensitive computation partitioning for mobile augmented reality applications[C/OL] //Proc of the 28th Int Symp on Quality of Service (IWQoS). Piscataway, NJ: IEEE, 2020[2022-02-19]. https://ieeexplore.ieee.org/docu ment/9212917
    [88]
    Song Fuhong, Xing Huanlai, Luo Shouxi, et al. A multiobjective computation offloading algorithm for mobile-edge computing[J]. IEEE Internet of Things Journal, 2020, 7(9): 8780−8799 doi: 10.1109/JIOT.2020.2996762
    [89]
    Lei Lei, Xu Huijuan, Xiong Xiong, et al. Joint computation offloading and multiuser scheduling using approximate dynamic programming in NB-IoT edge computing system[J]. IEEE Internet of Things Journal, 2019, 6(3): 5345−5362 doi: 10.1109/JIOT.2019.2900550
    [90]
    Littman M, Moore A. Reinforcement learning: A survey[J]. Journal of Artificial Intelligence Research, 1996, 4(1): 237−285
    [91]
    Wang Jin, Hu Jia, Min Geyong, et al. Fast adaptive task offloading in edge computing based on meta reinforcement learning[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(1): 242−253
    [92]
    Huisman M, Van R, Plaat A. A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021, 54(6): 4483−4541 doi: 10.1007/s10462-021-10004-4
    [93]
    Zhang Ke, Cao Jiayu, Zhang Yan. Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks[J]. IEEE Transactions on Industrial Informatics, 2021, 18(2): 1405−1413
    [94]
    Dai Yueyue, Xu Du, Zhang Ke, et al. Deep reinforcement learning and permissioned blockchain for content caching in vehicular edge computing and networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 4312−4324 doi: 10.1109/TVT.2020.2973705
    [95]
    Liang Fan, Yu Wei, Liu Xing, et al. Toward edge-based deep learning in industrial Internet of things[J]. IEEE Internet of Things Journal, 2020, 7(5): 4329−4341 doi: 10.1109/JIOT.2019.2963635
    [96]
    Guillén M, Llanes A, Imbernón B, et al. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning[J]. The Journal of Supercomputing, 2021, 77(1): 818−840 doi: 10.1007/s11227-020-03288-w
    [97]
    Zhao Ning, Wu Hao, Yu F, et al. Deep-reinforcement-learning-based latency minimization in edge intelligence over vehicular networks[J]. IEEE Internet of Things Journal, 2021, 9(2): 1300−1312
    [98]
    Li Bo, He Qiang, Chen Feifei, et al. Inspecting edge data integrity with aggregated signature in distributed edge computing environment [J/OL]. IEEE Transactions on Cloud Computing, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9354962
    [99]
    Li Yannan, Yu Yong, Susilo W, et al. Security and privacy for edge intelligence in 5G and beyond networks: Challenges and solutions[J]. IEEE Wireless Communications, 2021, 28(2): 63−69 doi: 10.1109/MWC.001.2000318
    [100]
    Li Bo, He Qiang, Chen Feifei, et al. Auditing cache data integrity in the edge computing environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(5): 1210−1223
    [101]
    Cui Guangming, He Qiang, Li Bo, et al. Efficient verification of edge data integrity in edge computing environment [J/OL]. IEEE Transactions on Services Computing, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstract /document/9459478
    [102]
    Li Bo, He Qiang, Chen Feifei, et al. Cooperative assurance of cache data integrity for mobile edge computing[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 4648−4662 doi: 10.1109/TIFS.2021.3111747
    [103]
    Tong Wei, Jiang Bingbing, Xu Fengyuan, et al. Privacy-preserving data integrity verification in mobile edge computing [C] //Proc of the 39th Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2019: 1007−1018
    [104]
    Xu Rongxu, Hang Lei, Jin Wenquan, et al. Distributed secure edge computing architecture based on blockchain for real-time data integrity in IoT environments[J]. Actuators, 2021, 10(8): 197−212 doi: 10.3390/act10080197
    [105]
    Shanthamallu U, Thiagarajan J, Spanias A. Uncertainty-matching graph neural networks to defend against poisoning attacks [C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021, 9524−9532
    [106]
    Alfeld S, Zhu Xiaojin, Barford P. Data poisoning attacks against autoregressive models [C/OL] //Proc of the 30th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2016[2022-02-19]. https://ojs.aaai.org/index.php/AA AI/article/view/10237
    [107]
    Jagielski M, Oprea A, Biggio B, et al. Manipulating machine learning: Poisoning attacks and countermeasures for regression learning [C] //Proc of the 2018 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2018: 19−35
    [108]
    Steinhardt J, Koh P, Liang P. Certified defenses for data poisoning attacks [J/OL]. Advances in Neural Information Processing Systems, 2017[2022-02-19]. https://proceedings.neurips.cc/paper/2017/hash/9d7311ba459f9e45ed746755a32dcd11-Abstract.html
    [109]
    Tolpegin V, Truex S, Gursoy M, et al. Data poisoning attacks against federated learning systems[C] //Proc of the European Symp on Research in Computer Security. Berlin: Springer, 2020: 480−501
    [110]
    Douceur J. The sybil attack[C] //Proc of the Int Workshop on Peer-to-Peer Systems. Berlin: Springer, 2002: 251−260
    [111]
    Doku R, Rawat D. Mitigating data poisoning attacks on a federated learning-edge computing network[C/OL] //Proc of the 18th Annual Consumer Communications & Networking Conf (CCNC). Piscataway, NJ: IEEE, 2021[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9369581
    [112]
    Xiao Liang, Wan Xiaoyue, Dai Canhuang, et al. Security in mobile edge caching with reinforcement learning[J]. IEEE Wireless Communications, 2018, 25(3): 116−122 doi: 10.1109/MWC.2018.1700291
    [113]
    Jia Xiaoying, He Debiao, Kumar N, et al. A provably secure and efficient identity-based anonymous authentication scheme for mobile edge computing[J]. IEEE Systems Journal, 2019, 14(1): 560−571
    [114]
    Kaur K, Garg S, Kaddoum G, et al. A lightweight and privacy-preserving authentication protocol for mobile edge computing [C/OL] //Proc of IEEE Global Communications Conf (GLOBECOM 2019). Piscataway, NJ: IEEE, 2019[2022-02-19]. https://ieeexplore.ieee.org/abstract/document/9013856
    [115]
    Gupta R, Reebadiya D, Tanwar S, et al. When blockchain meets edge intelligence: Trusted and security solutions for consumers[J]. IEEE Network, 2021, 35(5): 272−278 doi: 10.1109/MNET.001.2000735
    [116]
    Ding Jiahao, Liang Guannan, Bi Jinbo, et al. Differentially private and communication efficient collaborative learning [C/OL] //Proc of the 35th AAAI Conf on Artificial Intelligence, Virtual Conf. Palo Alto, CA: AAAI, 2021[2022-02-19]. https://ojs.aaai.org/index.php/AAAI/article/view/16887
    [117]
    Wang Ji, Bao Weidong, Sun Lichao, et al. Private model compression via knowledge distillation [C] //Proc of the 33rd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2019: 1190−1197
    [118]
    Abadi M, Chu A, Goodfellow I, et al. Deep learning with differential privacy [C] //Proc of the 2016 ACM SIGSAC Conf on Computer and Communications Security (CCS’16). New York: ACM, 2016: 308−318
    [119]
    Li He, Ota K, Dong Miaoxiong. Learning IoT in edge: Deep learning for the Internet of things with edge computing[J]. IEEE network, 2018, 32(1): 96−101
    [120]
    Yang Qiang, Liu Yang, Cheng Yong, et al. Federated learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2019, 13(3): 1−207 doi: 10.1007/978-3-031-01585-4
    [121]
    Liu Yi, Zhao Ruihui, Kang Jiawen, et al. Towards communication-efficient and attack-resistant federated edge learning for industrial internet of things[J]. ACM Transactions on Internet Technology, 2021, 22(3): 1−22
    [122]
    Liu Yi, James J, Kang Jiawen, et al. Privacy-preserving traffic flow prediction: A federated learning approach[J]. IEEE Internet of Things Journal, 2020, 7(8): 7751−7763 doi: 10.1109/JIOT.2020.2991401
    [123]
    Liu Yi, Yuan Xingliang, Xiong Zehui, et al. Federated learning for 6G communications: Challenges, methods, and future directions[J]. China Communications, 2020, 17(9): 105−118 doi: 10.23919/JCC.2020.09.009
    [124]
    Li Tian, Sahu A, Talwalkar A, et al. Federated learning: Challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 50−60 doi: 10.1109/MSP.2020.2975749
    [125]
    Thalluri L, Venkat S, Prasad C, et al. Artificial intelligence enabled smart city IoT system using edge computing [C] //Proc of the 2nd Int Conf on Smart Electronics and Communication (ICOSEC). Piscataway, NJ: IEEE, 2021: 12−20
    [126]
    Nasir M, Muhammad K, Ullah A, et al. Enabling automation and edge intelligence over resource constraint IoT devices for smart home [J/OL]. Neurocomputing, 2021[2022-02-19]. https://www.sciencedirect.com/scienc e/article/abs/pii/S0925231221016301
    [127]
    Sadiku M, Tembely M, Musa S. Internet of vehicles: An introduction [J]. Internet Journal of Advanced Research in Computer Science and Software Engineering, 2018, 8(1): 11
    [128]
    Grover H, Alladi T, Chamola V, et al. Edge computing and deep learning enabled secure multitier network for Internet of vehicles[J]. IEEE Internet of Things Journal, 2021, 8(19): 14787−14796 doi: 10.1109/JIOT.2021.3071362
    [129]
    Zhang Qingyang, Wang Yifan, Zhang Xingzhou, et al. OpenVDAP: An open vehicular data analytics platform for CAVs[C] //Proc of the 38th IEEE Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2018: 1310−1320
    [130]
    Lv Zhihan, Chen Dongliang, Wang Qingjun. Diversified technologies in Internet of vehicles under intelligent edge computing[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(4): 2048−2059
    [131]
    Li Tailai, Zhang Chaokun, Zhou Xiaobo. BP-CODS: Blind-spot-prediction-assisted multi-vehicle collaborative data scheduling [C/OL] //Proc of the 17th Int Conf on Wireless Algorithms, Systems, and Applications (WASA 2022). Berlin: Springer, 2022[2022-02-19]. https://link.springer.com/chapter/10.1007/978-3-031-19211-1_25
    [132]
    Liu Jia, Xiang Jianjian, Jin Yongjun, et al. Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey [J]. Remote Sensing, 2021, 13(21): 4387
    [133]
    Tyagi A. Towards a second green revolution[J]. Irrigation and Drainage, 2016, 4(65): 388−389
    [134]
    Kamilaris A, Prenafeta-Boldú F. Deep learning in agriculture: A survey[J]. Computers and electronics in agriculture, 2018, 147: 70−90 doi: 10.1016/j.compag.2018.02.016
    [135]
    Dionisio J, William G, Gilbert R. 3D virtual worlds and the metaverse: Current status and future possibilities[J]. ACM Computing Surveys, 2013, 45(3): 1−38
    [136]
    Duan Haihan, Li Jiaye, Fan Sizheng, et al. Metaverse for social good: A university campus prototype [C] //Proc of the 29th ACM Int Conf on Multimedia. New York: ACM, 2021: 153−161
    [137]
    Zhang Zhengquan, Xiao Yue, Ma Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28−41 doi: 10.1109/MVT.2019.2921208
    [138]
    You Xiaohu, Wang Chengxiang, Huang Jie, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 1−74
    [139]
    Dai Hongning, Wu Yulei, Wang Hao, et al. Blockchain-empowered edge intelligence for Internet of medical things against COVID-19[J]. IEEE Internet of Things Magazine, 2021, 4(2): 34−39 doi: 10.1109/IOTM.0011.2100030
    [140]
    Han Tao, Ansari N. On optimizing green energy utilization for cellular networks with hybrid energy supplies[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 3872−3882 doi: 10.1109/TCOMM.2013.051313.121249
    [141]
    Quan Li, Huang Qin, Zhang Shengli, et al. Downsampling blockchain algorithm[C] //Proc of the IEEE Conf on Computer Communications Workshops (INFOCOM WKSHPS 2019). Piscataway, NJ: IEEE, 2019: 342−347
  • Related Articles

    [1]Li Nan, Ding Yidong, Jiang Haoyu, Niu Jiafei, Yi Ping. Jailbreak Attack for Large Language Models: A Survey[J]. Journal of Computer Research and Development, 2024, 61(5): 1156-1181. DOI: 10.7544/issn1000-1239.202330962
    [2]Wang Mengru, Yao Yunzhi, Xi Zekun, Zhang Jintian, Wang Peng, Xu Ziwen, Zhang Ningyu. Safety Analysis of Large Model Content Generation Based on Knowledge Editing[J]. Journal of Computer Research and Development, 2024, 61(5): 1143-1155. DOI: 10.7544/issn1000-1239.202330965
    [3]Chen Xuanting, Ye Junjie, Zu Can, Xu Nuo, Gui Tao, Zhang Qi. Robustness of GPT Large Language Models on Natural Language Processing Tasks[J]. Journal of Computer Research and Development, 2024, 61(5): 1128-1142. DOI: 10.7544/issn1000-1239.202330801
    [4]Chen Huimin, Liu Zhiyuan, Sun Maosong. The Social Opportunities and Challenges in the Era of Large Language Models[J]. Journal of Computer Research and Development, 2024, 61(5): 1094-1103. DOI: 10.7544/issn1000-1239.202330700
    [5]Yang Yi, Li Ying, Chen Kai. Vulnerability Detection Methods Based on Natural Language Processing[J]. Journal of Computer Research and Development, 2022, 59(12): 2649-2666. DOI: 10.7544/issn1000-1239.20210627
    [6]Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209
    [7]Zheng Haibin, Chen Jinyin, Zhang Yan, Zhang Xuhong, Ge Chunpeng, Liu Zhe, Ouyang Yike, Ji Shouling. Survey of Adversarial Attack, Defense and Robustness Analysis for Natural Language Processing[J]. Journal of Computer Research and Development, 2021, 58(8): 1727-1750. DOI: 10.7544/issn1000-1239.2021.20210304
    [8]Pan Xudong, Zhang Mi, Yan Yifan, Lu Yifan, Yang Min. Evaluating Privacy Risks of Deep Learning Based General-Purpose Language Models[J]. Journal of Computer Research and Development, 2021, 58(5): 1092-1105. DOI: 10.7544/issn1000-1239.2021.20200908
    [9]Bao Yang, Yang Zhibin, Yang Yongqiang, Xie Jian, Zhou Yong, Yue Tao, Huang Zhiqiu, Guo Peng. An Automated Approach to Generate SysML Models from Restricted Natural Language Requirements in Chinese[J]. Journal of Computer Research and Development, 2021, 58(4): 706-730. DOI: 10.7544/issn1000-1239.2021.20200757
    [10]Che Haiyan, Feng Tie, Zhang Jiachen, Chen Wei, and Li Dali. Automatic Knowledge Extraction from Chinese Natural Language Documents[J]. Journal of Computer Research and Development, 2013, 50(4): 834-842.
  • Cited by

    Periodical cited type(66)

    1. 袁良志,海佳丽,汪润,邓文萍,肖勇,常凯. 知识图谱驱动的中医药标准数字化探索与实践. 中医药导报. 2025(01): 225-230 .
    2. 范定容,王倩倩,沈奥,彭露. 从ChatGPT到Sora:人工智能在医学教育中的应用潜力与挑战. 中国医学教育技术. 2025(01): 33-40 .
    3. 刘园园,王银刚. ChatGPT影响大学生判断能力:双向机理与对策. 湖北成人教育学院学报. 2025(01): 29-34 .
    4. 魏昱,刘卫. 人工智能生成内容在服装设计中的应用现状. 毛纺科技. 2025(01): 134-142 .
    5. 李冰,鲜勇,雷刚,苏娟. ChatGPT架构下课程智能教学助手建设探讨. 教育教学论坛. 2025(03): 45-48 .
    6. 梁炜,许振宇. 大语言模型赋能舆情治理现代化:价值、风险与路径. 中国应急管理科学. 2025(01): 93-103 .
    7. 刘邦奇,聂小林,王士进,袁婷婷,朱洪军,赵子琪,朱广袤. 生成式人工智能与未来教育形态重塑:技术框架、能力特征及应用趋势. 电化教育研究. 2024(01): 13-20 .
    8. 秦涛,杜尚恒,常元元,王晨旭. ChatGPT的工作原理、关键技术及未来发展趋势. 西安交通大学学报. 2024(01): 1-12 .
    9. 张小朝. AIGC在商旅行业中的应用探索. 广东通信技术. 2024(01): 75-79 .
    10. 廉霄兴,宋勇,朱军,王淑玲,叶晓舟,欧阳晔. 基于双通道理论的通信认知增强技术研究. 电信科学. 2024(01): 123-135 .
    11. 杨永恒. 人工智能时代社会科学研究的“变”与“不变”. 人民论坛·学术前沿. 2024(04): 96-105 .
    12. 刘英祥,张琳. 生成式人工智能技术在海事管理工作中的应用探索. 航海. 2024(02): 62-64 .
    13. 吕静,何平,王永芬,冉朝霞,曹钦兴,古文帆,彭敏,田敏. ChatGPT在医学领域研究态势的文献计量学分析. 医学与哲学. 2024(07): 30-35 .
    14. 王益君,董韵美. 公众对人工智能的认知与情感态度——以ChatGPT为例. 知识管理论坛. 2024(01): 16-29 .
    15. 陈雷. ChatGPT在公安院校教育教学中的应用及影响. 太原城市职业技术学院学报. 2024(02): 85-88 .
    16. 尤冲,李彦兵. 基于ChatGPT大语言模型应用的公共体育服务智能化:指征、风险及其规制. 南京体育学院学报. 2024(02): 1-12 .
    17. 杨胜钦. 从ChatGPT看AI对电信网络诈骗犯罪治理的影响. 犯罪与改造研究. 2024(05): 26-33 .
    18. 王春英,姚亚妮,滕白莹. 生成式人工智能嵌入敏捷政府建设:影响、风险与应对. 北京行政学院学报. 2024(03): 73-83 .
    19. 王雯,李永智. 国际生成式人工智能教育应用与省思. 开放教育研究. 2024(03): 37-44 .
    20. 张智义. 体认语言学视阈下ChatGPT语言生成及性能研究. 外语研究. 2024(03): 20-25+43+112 .
    21. 余淑珍,单俊豪,闫寒冰. 情感计算赋能个性化教学:逻辑框架、问题解构与多元重塑. 现代远距离教育. 2024(02): 53-61 .
    22. 高尚. 大语言模型与中台:共融还是替代?. 科技与金融. 2024(05): 59-62 .
    23. 郭亚军,马慧芳,张鑫迪,冯思倩. ChatGPT赋能图书馆知识服务:原理、场景与进路. 图书馆建设. 2024(03): 60-68 .
    24. 高雪松,黄蕴华,王斌. 基于专利数据的生成式人工智能技术栈创新态势研究. 东北财经大学学报. 2024(04): 53-61 .
    25. 张渊. ChatGPT文本的生成机制与文本特性分析. 重庆文理学院学报(社会科学版). 2024(04): 105-114 .
    26. 罗仕鉴,于慧伶,易珮琦. 数智时代工业设计知识生产新范式. 机械设计. 2024(08): 6-10 .
    27. 徐炳文. 基于ChatGPT的人工智能交互技术工业物联网平台研究. 工业控制计算机. 2024(08): 132-134 .
    28. Deyi Li,Jialun Yin,Tianlei Zhang,Wei Han,Hong Bao. The Four Most Basic Elements In Machine Cognition. Data Intelligence. 2024(02): 297-319 .
    29. 黄语,刘海洋,常海军,杨远松. 基于ChatGPT工作模式的AI工具在BIM技术中的潜在应用与实现途径. 科技创新与应用. 2024(26): 181-184+188 .
    30. 李琳娜,丁楷,韩红旗,王力,李艾丹. 基于知识图谱的中文科技文献问答系统构建研究. 中国科技资源导刊. 2024(04): 51-62 .
    31. 裴炳森,李欣,蒋章涛,刘明帅. 基于大语言模型的公安专业小样本知识抽取方法研究. 计算机科学与探索. 2024(10): 2630-2642 .
    32. 李克寒,余丽媛,邵企能,蒋可,乌丹旦. 大语言模型在口腔住院医师规范化培训中的应用构想. 中国卫生产业. 2024(07): 155-158 .
    33. 钟厚涛. 生成式人工智能给翻译实践带来的机遇与挑战. 北京翻译. 2024(00): 238-250 .
    34. 张夏恒,马妍. AIGC在应急情报服务中的应用研究. 图书馆工作与研究. 2024(11): 60-67 .
    35. 崔金满,李冬梅,田萱,孟湘皓,杨宇,崔晓晖. 提示学习研究综述. 计算机工程与应用. 2024(23): 1-27 .
    36. 周代数,魏杉汀. 人工智能驱动的科学研究第五范式:演进、机制与影响. 中国科技论坛. 2024(12): 97-107 .
    37. 钱力,张智雄,伍大勇,常志军,于倩倩,胡懋地,刘熠. 科技文献大模型:方法、框架与应用. 中国图书馆学报. 2024(06): 45-58 .
    38. 潘崇佩,廖康启,孔勇发. 生成式人工智能背景下的近代物理实验教学改革. 实验室研究与探索. 2024(12): 117-122 .
    39. 李德毅,刘玉超,殷嘉伦. 认知机器如何创造. 中国基础科学. 2024(06): 1-11 .
    40. 李德毅,张天雷,韩威,海丹,鲍泓,高洪波. 认知机器的结构和激活. 智能系统学报. 2024(06): 1604-1613 .
    41. 蔡昌,庞思诚. ChatGPT的智能性及其在财税领域的应用. 商业会计. 2023(09): 41-46 .
    42. 于书娟,卢小雪,赵磊磊. 教育人工智能变革的基本逻辑与发展进路. 当代教育科学. 2023(05): 40-49 .
    43. 曹克亮. ChatGPT:意识形态家的机器学转向及后果. 统一战线学研究. 2023(04): 134-144 .
    44. 宋恺,屈蕾蕾,杨萌科. 生成式人工智能的治理策略研究. 信息通信技术与政策. 2023(07): 83-88 .
    45. 陈凌云,姚宽达,王茜,方安,李刚. ChatGPT:研究进展、模型创新及医学信息研究应用场景优化. 医学信息学杂志. 2023(07): 18-23+29 .
    46. 彭强,李羿卫. 自然用户界面在智能家居系统中的应用路径创新研究:生成式人工智能技术的调节作用. 包装工程. 2023(16): 454-463 .
    47. 杨军农,王少波. 类ChatGPT技术嵌入政务服务网的应用场景、风险隐患与实施建议. 信息与电脑(理论版). 2023(10): 183-186 .
    48. 政光景,吕鹏. 生成式人工智能与哲学社会科学新范式的涌现. 江海学刊. 2023(04): 132-142+256 .
    49. 吴梦妮. 社交媒体传播视域下玩具企业应用AI技术实施营销的实践路径. 玩具世界. 2023(04): 144-146 .
    50. 李德毅,殷嘉伦,张天雷,韩威,鲍泓. 机器认知四要素说. 中国基础科学. 2023(03): 1-10+22 .
    51. 王洁. ChatGPT对知识服务的五大变革. 图书馆. 2023(09): 10-16 .
    52. 刘乃嘉. 基于ChatGPT的矿山工程风险评估预警系统实现探讨. 企业科技与发展. 2023(08): 44-47 .
    53. 裴炳森,李欣,吴越. 基于ChatGPT的电信诈骗案件类型影响力评估. 计算机科学与探索. 2023(10): 2413-2425 .
    54. 张新新,丁靖佳. 生成式智能出版的技术原理与流程革新. 图书情报知识. 2023(05): 68-76 .
    55. 张新新,黄如花. 生成式智能出版的应用场景、风险挑战与调治路径. 图书情报知识. 2023(05): 77-86+27 .
    56. 陈靖. ChatGPT的类人想象与安全风险分析. 网络空间安全. 2023(04): 8-12 .
    57. 李佩芳,陈佳丽,宁宁,王立群,张涵旎. ChatGPT在医学领域的应用进展及思考. 华西医学. 2023(10): 1456-1460 .
    58. 朱敏锐,郜云帆,黄勇. 以新时代优良学风涵养新时代外语人才. 北京教育(高教). 2023(11): 35-37 .
    59. 丁红菊. 消解与重构:人工智能技术对新闻业的影响——基于对ChatGPT的研究. 运城学院学报. 2023(05): 57-62 .
    60. 李钥,淮盼盼,杨辉. ChatGPT在护理教育中的应用状况及优劣分析. 护理学杂志. 2023(21): 117-121 .
    61. 张绍龙. 基于ChatGPT的人工智能技术应用. 集成电路应用. 2023(11): 200-201 .
    62. 崔克克,孙冲,李辉,赵凌飞. 浅谈水泥企业数字化转型发展. 中国水泥. 2023(12): 28-33 .
    63. 单琳,王文娟,刘舒萌. ChatGPT在医学分子生物学教学中的应用. 基础医学教育. 2023(12): 1084-1086 .
    64. 李德毅,刘玉超,任璐. 人工智能看智慧. 科学与社会. 2023(04): 131-149 .
    65. 付翔,魏晓伟,张浩,徐宁. 数字安全角度下审视和剖析ChatGPT. 航空兵器. 2023(06): 117-122 .
    66. 黄婷,刘力凯. 基于大模型的数智化语言教学探索与应用. 连云港职业技术学院学报. 2023(04): 73-79 .

    Other cited types(0)

Catalog

    Article views (850) PDF downloads (422) Cited by(66)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return