• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liang Xun, Li Zhiying, Jiang Hongxun. Research on Graph-Based Point Cloud: A Survey[J]. Journal of Computer Research and Development, 2024, 61(11): 2870-2896. DOI: 10.7544/issn1000-1239.202330077
Citation: Liang Xun, Li Zhiying, Jiang Hongxun. Research on Graph-Based Point Cloud: A Survey[J]. Journal of Computer Research and Development, 2024, 61(11): 2870-2896. DOI: 10.7544/issn1000-1239.202330077

Research on Graph-Based Point Cloud: A Survey

Funds: This work was supported by the National Natural Science Foundation of China (72071203).
More Information
  • Author Bio:

    Liang Xun: born in 1965. PhD, professor, PhD supervisor. His main research interests include neural networks, social computing, and natural language processing

    Li Zhiying: born in 1996. PhD candidate. Her main research interests include point cloud analysis, graph neural networks, and deep learning

    Jiang Hongxun: born in 1974. PhD, associate professor. His main research interests include information system engineering, network finance, and social computing

  • Received Date: February 15, 2023
  • Revised Date: December 25, 2023
  • Accepted Date: March 05, 2024
  • Available Online: March 06, 2024
  • The processing, transmission, and semantic segmentation of point clouds are important analytical tasks in the field of 3D computer vision. Nowadays, the effectiveness of graph neural networks and graph structures in point cloud research has been confirmed, and graph-based point cloud (GPC) research continues to emerge. Therefore, a unified research perspective, framework and methodology need to be formed. This paper systematically sorts out various application scenarios of GPC research, including registration, denoising, compression, representation learning, classification, segmentation, detection and other tasks, summarizes the general framework of GPC research, and proposes a technical route covering the current GPC research. Specifically, this paper gives the hierarchical concept category of GPC research, including low-level data processing, intermediate representation learning, and high-level recognition tasks. GPC models or algorithms in various fields are reviewed, including static and dynamic point cloud processing algorithms, supervised and unsupervised representation learning models, and traditional or machine learning GPC recognition algorithms. The representative achievements and their core ideas are summarized, such as dynamically updating the nearest neighbor graph at each layer of feature space, hierarchical and parameter sharing dynamic point aggregation module, and segmentation accuracy improvement employing graph partitioning as well as graph convolution. The model performances are compared, including OA (overall accuracy), mAcc (mean accuracy) and mIoU (mean intersection over union). Based on the analysis and comparison of existing models and methods, the main challenges faced by GPC are summarized, the corresponding research issues are put forward, and the future research directions are explored. The GPC research framework established in this paper is general and comprehensive, which provides field positioning, technical summary and macro perspective for subsequent researchers to engage in this new cross-field research of GPC. The emergence of point cloud research is the result of the rapid progress of detector hardware technology. The current state of point cloud research indicates some challenges between theory and practical applications, and there are still some key issues to be addressed. However, the development of point cloud research is expected to propel artificial intelligence into a new era.

  • [1]
    Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm [C] //Proc of the 25th Int Conf on Computer Graphics and Interactive Techniques. New York: ACM, 1998: 415−422
    [2]
    Boissonnat J D. Geometric structures for three-dimensional shape representation[J]. ACM Transactions on Graphics, 1984, 3(4): 266−286 doi: 10.1145/357346.357349
    [3]
    Bernardini F, Mittleman J, Rushmeier H, et al. The ball-pivoting algorithm for surface reconstruction[J]. IEEE Transactions on Visualization and Computer Graphics, 1999, 5(4): 349−359 doi: 10.1109/2945.817351
    [4]
    Schechter H, Bridson R. Ghost SPH for animating water[J]. ACM Transactions on Graphics, 2012, 31(4): 1−8
    [5]
    Riegler G, Ulusoy A O, Geiger A. OctNet: Learning deep 3D representations at high resolutions [C] //Proc of 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017: 6620−6629
    [6]
    Qi C R, Su Hao, Niebner M, et al. Volumetric and multi-view CNNs for object classification on 3D data [C] //Proc of 2016 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2016: 5648−5656
    [7]
    Malik J, Shimada S, Elhayek A, et al. HandVoxNet++: 3D hand shape and pose estimation using voxel-based neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 8962−8974
    [8]
    Su Hang, Maji S, Kalogerakis E, et al. Multi-view convolutional neural networks for 3D shape recognition [C] //Proc of 2015 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2015: 945−953
    [9]
    Liebelt J, Schmid C. Multi-view object class detection with a 3D geometric model [C] //Proc of 2010 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2010: 1688−1695
    [10]
    Li Lei, Zhu Siyu, Fu Hongbo, et al. End-to-end learning local multi-view descriptors for 3D point clouds [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 1916−1925
    [11]
    Chen Xiaozhi, Ma Huimin, Wan Ji, et al. Multi-view 3D object detection network for autonomous driving [C] //Proc of 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017: 6526−6534
    [12]
    Wang Nanyang, Zhang Yinda, Li Zhuwen, et al. Pixel2Mesh: Generating 3D mesh models from single RGB images [C] //Proc of the 15th European Conf on Computer Vision (ECCV). Berlin: Springer, 2018: 55−71
    [13]
    Guo Kan, Zou Dongqing, Chen Xiaowu. 3D mesh labeling via deep convolutional neural networks[J]. ACM Transactions on Graphics, 2015, 35(1): 1−12
    [14]
    Qi C R, Su Hao, Mo Kaichun, et al. PointNet: Deep learning on point sets for 3D classification and segmentation [C] //Proc of 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017: 77−85
    [15]
    Qi C R, Yi Li, Su Hao, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space [C] //Proc of 2017 Advances in Neural Information Processing Systems. New York: ACM, 2017: 5100−5109
    [16]
    李尚林,谢文军,李琳,等. 计算机快速建筑建模方法综述[J]. 计算机学报,2019,42(9):1966−1990

    Li Shanglin, Xie Wenjun, Li Lin, et al. Computer rapid modeling methods of architecture: A review[J]. Chinese Journal of Computers, 2019, 42(9): 1966−1990 (in Chinese)
    [17]
    Lu Weixin, Zhou Yao, Wan Guowei, et al. L3-Net: Towards learning based LiDAR localization for autonomous driving [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 6382−6391
    [18]
    Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite [C] //Proc of 2012 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2012: 3354−3361
    [19]
    Meyer G P, Laddha A, Kee E, et al. LaserNet: An efficient probabilistic 3D object detector for autonomous driving [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 12669−12678
    [20]
    Das S, Patibandla H, Bhattacharya S, et al. TMCOSS: Thresholded multi-criteria online subset selection for data-efficient autonomous driving [C] //Proc of 2021 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 6321−6330
    [21]
    Marinoiu E, Zanfir M, Olaru V, et al. 3D human sensing, action and emotion recognition in robot assisted therapy of children with autism [C] //Proc of 2018 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2018: 2158−2167
    [22]
    Kasaei S H, Sock J, Lopes L S, et al. Perceiving, learning, and recognizing 3D objects: An approach to cognitive service robots [C] //Proc of the 32nd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2018: 596−603
    [23]
    Im S, Ha H, Choe G, et al. High quality structure from small motion for rolling shutter cameras [C] //Proc of 2015 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2015: 837−845
    [24]
    Behley J, Garbade M, Milioto A, et al. SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences [C] //Proc of 2019 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 9296−9306
    [25]
    Frueh C, Zakhor A. Constructing 3D city models by merging ground-based and airborne views [C] //Proc of 2003 IEEE Computer Society Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2003: II-562
    [26]
    Papon J, Abramov A, Schoeler M, et al. Voxel cloud connectivity segmentation - Supervoxels for point clouds [C] //Proc of 2013 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2013: 2027−2034
    [27]
    Lee D, Lee J, Lee J, et al. Regularization strategy for point cloud via rigidly mixed sample [C] //Proc of 2021 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2021: 15895−15904
    [28]
    Lei Huan, Akhtar N, Mian A. Octree guided CNN with spherical kernels for 3D point clouds [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 9623−9632
    [29]
    Zhao Hengshuang, Jiang Li, Fu Chiwing, et al. Pointweb: Enhancing local neighborhood features for point cloud processing [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 5560−5568
    [30]
    Zhou Haoran, Chen Honghua, Feng Yidan, et al. Geometry and learning co-supported normal estimation for unstructured point cloud [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 13235−13244
    [31]
    Behl A, Paschalidou D, Donne S, et al. Pointflownet: Learning representations for rigid motion estimation from point clouds [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 7954−7963
    [32]
    Meng Hsienyu, Gao Lin, Lai Yukun, et al. VV-Net: Voxel VAE net with group convolutions for point cloud segmentation [C] //Proc of 2019 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 8499−8507
    [33]
    Casajus P H, Ritschel T, Ropinski T. Total denoising: Unsupervised learning of 3D point cloud cleaning [C] //Proc of 2019 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 52−60
    [34]
    Landrieu L, Simonovsky M. Large-scale point cloud semantic segmentation with superpoint graphs [C] //Proc of 2018 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2018: 4558−4567
    [35]
    Simonovsky M, Komodakis N. Dynamic edge-conditioned filters in convolutional neural networks on graphs [C] //Proc of 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017: 29−38
    [36]
    Li Guohao, Muller M, Thabet A, et al. DeepGCNs: Can GCNs go as deep as CNNs [C] //Proc of 2019 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 9266−9275
    [37]
    Xu Qiangeng, Sun Xudong, Wu Choying, et al. Grid-GCN for fast and scalable point cloud learning [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 5660−5669
    [38]
    Zhang Yingxue, Rabbat M. A graph-CNN for 3D point cloud classification [C] // Proc of 2018 IEEE Int Conf on Acoustics, Speech, and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2018: 6279−6283
    [39]
    Landrieu L, Boussaha M. Point cloud oversegmentation with graph-structured deep metric learning [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 7432−7441
    [40]
    Wang Chu, Samari B, Siddiqi K. Local spectral graph convolution for point set feature learning [C] //Proc of the 15th European Conf on Computer Vision (ECCV). Berlin: Springer, 2018: 56−71
    [41]
    Li Ruihui, Li Xianzhi, Heng Phengann, et al. PointAugment: An auto-augmentation framework for point cloud classification [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 6377−6386
    [42]
    Lin Xuanxiang, Chen Ke, Jia Kui. Object point cloud classification via poly-convolutional architecture search [C] //Proc of the 29th ACM Int Conf on Multimedia (MM). New York: ACM, 2021: 807−815
    [43]
    Wang Lei, Huang Yuchun, Hou Yaolin, et al. Graph attention convolution for point cloud semantic segmentation [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 10288−10297
    [44]
    Li Rongkang, Zhang Yumeng, Niu Dongmei, et al. PointVGG: Graph convolutional network with progressive aggregating features on point clouds[J]. Neurocomputing, 2021, 429: 187−198 doi: 10.1016/j.neucom.2020.10.086
    [45]
    Xu Yusheng, Tuttas S, Hoegner L, et al. Geometric primitive extraction from point clouds of construction sites using VGS[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 424−428 doi: 10.1109/LGRS.2017.2647816
    [46]
    Chen Yang, Xu Yaming, Xing Yin, et al. DGCNN network architecture with densely connected point pairs in multiscale local regions for ALS point cloud classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1−5
    [47]
    Chen Siheng, Tian Dong, Feng Chen, et al. Fast resampling of three-dimensional point clouds via graphs[J]. IEEE Transactions on Signal Processing, 2018, 66(3): 666−681 doi: 10.1109/TSP.2017.2771730
    [48]
    Chen Chaomei. Science mapping: A systematic review of the literature[J]. Journal of Data and Information Science, 2017, 2(2): 1−40 doi: 10.1515/jdis-2017-0006
    [49]
    Chen Chaomei, Song Ming. Visualizing a field of research: A methodology of systematic scientometric reviews[J]. Plos One, 2019, 14(10): e0223994 doi: 10.1371/journal.pone.0223994
    [50]
    Guo Yulan, Wang Hanyun, Hu Qingyong, et al. Deep learning for 3D point clouds: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(12): 4338−4364
    [51]
    Fei Ben, Yang Weidong, Chen Wenming, et al. Comprehensive review of deep learning-based 3D point cloud completion processing and analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 22862−22883 doi: 10.1109/TITS.2022.3195555
    [52]
    Thanou D, Chou P A, Frossard P. Graph-based compression of dynamic 3D point cloud sequences[J]. IEEE Transactions on Image Processing, 2016, 25(4): 1765−1778 doi: 10.1109/TIP.2016.2529506
    [53]
    DeQueiroz R L, Chou P A. Motion-compensated compression of dynamic voxelized point clouds[J]. IEEE Transactions on Image Processing, 2017, 26(8): 3886−3895 doi: 10.1109/TIP.2017.2707807
    [54]
    Liu Xingyu, Yan Mengyuan, Bohg J. Meteornet: Deep learning on dynamic 3D point cloud sequences [C] //Proc of 2019 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 9245−9254
    [55]
    Guerrero P, Kleiman Y, Ovsjanikov M, et al. PCPNet: Learning local shape properties from raw point clouds[J]. Computer Graphics Forum, 2018, 37(2): 75−85 doi: 10.1111/cgf.13343
    [56]
    University College London. PCPNet dataset [EB/OL]. [2023-01-04]. http://geometry.cs.ucl.ac.uk/projects/2018/pcpnet/
    [57]
    Demarsin K, Vanderstraeten D, Volodine T, et al. Detection of closed sharp edges in point clouds using normal estimation and graph theory[J]. CAD Computer Aided Design, 2007, 39(4): 276−283 doi: 10.1016/j.cad.2006.12.005
    [58]
    Wang Yue, Sun Yongbin, Liu Ziwei, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1−12
    [59]
    Shen Yiru, Feng Chen, Yang Yaoqing, et al. Mining point cloud local structures by kernel correlation and graph pooling [C] //Proc of 2018 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2018: 4548−4557
    [60]
    Adoni H W Y, Nahhal T, Krichen M, et al. A survey of current challenges in partitioning and processing of graph-structured data in parallel and distributed systems[J]. Distributed and Parallel Databases, 2020, 38(2): 495−530 doi: 10.1007/s10619-019-07276-9
    [61]
    项英倬,谭菊仙,韩杰思,等. 图匹配技术研究[J]. 计算机科学,2018,45(6):27−31,45

    Xiang Yingzhuo, Tan Juxian, Han Jiesi, et al. Survey of graph matching algorithms [J]. Computer Science, 2018, 45(6): 27−31, 45 (in Chinese)
    [62]
    Jurić A, Kendeš F, Marković I, et al. A comparison of graph optimization approaches for pose estimation in SLAM [C] //Proc of the 44th Int Convention on Information, Communication and Electronic Technology (MIPRO). Piscataway, NJ: IEEE, 2021: 1113−1118
    [63]
    Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains [C] //Proc of 2005 IEEE Int Joint Conf on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2005: 729−734
    [64]
    Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs [C/OL] //Proc of the 2nd Int Conf on Learning Representations (ICLR). 2014[2023-01-04]. https://openreview.net/forum?id=DQNsQf-UsoDBa
    [65]
    Shuman D I, Narang S K, Frossard P, et al. The emerging field of signal processing on graphs[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83−98 doi: 10.1109/MSP.2012.2235192
    [66]
    Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering [C] //Proc of 2016 Advances in Neural Information Processing Systems. New York: ACM, 2016: 3837−3845
    [67]
    Levie R, Monti F, Bresson X, et al. CayleyNets: Graph convolutional neural networks with complex rational spectral filters[J]. IEEE Transactions on Signal Processing, 2019, 67(1): 97−109 doi: 10.1109/TSP.2018.2879624
    [68]
    Hamilton W, Ying Rex, Leskovec J. Inductive representation learning on large graphs [C] //Proc of 2017 Advances in Neural Information Processing Systems. New York: ACM, 2017: 1024−1034
    [69]
    Chen Jie, Ma Tengfei, Xiao Cao. FastGCN: Fast learning with graph convolutional networks via importance sampling [C/OL] //Proc of the 6th Int Conf on Learning Representations (ICLR). 2018[2023-01-04]. https://openreview.net/forum?id=rytstxWAW
    [70]
    Wang Chun, Pan Shirui, Long Guodong, et al. MGAE: Marginalized graph autoencoder for graph clustering [C] //Proc of the 26th ACM on Conf on Information and Knowledge Management. New York: ACM, 2017: 889−898
    [71]
    Hasanzadeh A, Hajiramezanali E, Narayanan K, et al. Semi-implicit graph variational auto-encoders [C] //Proc of 2019 Advances in Neural Information Processing Systems. New York: ACM, 2019: 10711−10722
    [72]
    Wang Hongwei, Wang Jia, Wang Jialin, et al. GraphGAN: Graph representation learning with generative adversarial nets [C] //Proc of the 32nd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2018: 2508−2515
    [73]
    Ding Ming, Tang Jie, Zhang Jie. Semi-supervised learning on graphs with generative adversarial nets [C] //Proc of the 27th ACM Int Conf on Information and Knowledge Management. New York: ACM, 2018: 913−922
    [74]
    Lee J B, Rossi R, Kong Xiangnan. Graph classification using structural attention [C] //Proc of the 24th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1666−1674
    [75]
    Knyazev B, Taylor G W, Amer M. Understanding attention and generalization in graph neural networks [C] //Proc of 2019 Advances in Neural Information Processing Systems. New York: ACM, 2019: 4204−4214
    [76]
    Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online learning of social representations [C] //Proc of the 20th ACM SIGKDD Int Conf on Knowledge discovery and data mining. New York: ACM, 2014: 701−710
    [77]
    Grover A, Leskovec J. Node2vec: Scalable feature learning for networks [C] //Proc of the 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855−864
    [78]
    Tu Cunchao, Liu Han, Liu Zhiyuan, et al. CANE: Context-aware network embedding for relation modeling [C] //Proc of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2017: 1722−1731
    [79]
    Li Ziyao, Zhang Liang, Song Guojie. SepNE: Bringing separability to network embedding [C] //Proc of the 33rd AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2019: 4261−4268
    [80]
    张顺利,徐艳芝,周明全,等. 基于自适应邻域匹配的点云配准方法[J]. 计算机学报,2019,42(9):2114−2126

    Zhang Shunli, Xu Yanzhi, Zhou Mingquan, et al. Registration of point clouds based on matching of general adaptive neighborhood[J]. Chinese Journal of Computers, 2019, 42(9): 2114−2126 (in Chinese)
    [81]
    徐思雨,祝继华,田智强,等. 逐步求精的多视角点云配准方法[J]. 自动化学报,2019,45(8):1486−1494

    Xu Siyu, Zhu Jihua, Tian Zhiqiang, et al. Stepwise refinement approach for registration of multi-view point sets[J]. Acta Automatica Sinica, 2019, 45(8): 1486−1494 (in Chinese)
    [82]
    缪永伟,刘家宗,孙瑜亮,等. 基于类别-实例分割的室内点云场景修复补全[J]. 计算机学报,2021,44(11):2189−2202 doi: 10.11897/SP.J.1016.2021.02189

    Miao Yongwei, Liu Jiazong, Sun Yuliang, et al. Point cloud completion of indoor scenes based on category-instance segmentation[J]. Chinese Journal of Computers, 2021, 44(11): 2189−2202 (in Chinese) doi: 10.11897/SP.J.1016.2021.02189
    [83]
    蔡钦镒,陈中贵,曹娟. 基于最优传输理论的高质量点云重采样方法[J]. 计算机学报,2022,45(1):135−147

    Cai Qinyi, Chen Zhonggui, Cao Juan. High-quality point cloud resampling method based on optimal transport theory[J]. Chinese Journal of Computers, 2022, 45((1): ): 135−147 (in Chinese)
    [84]
    Gu Shuai, Hou Junhui, Zeng Huanqiang, et al. 3D point cloud attribute compression via graph prediction[J]. IEEE Signal Processing Letters, 2020, 27: 176−180 doi: 10.1109/LSP.2019.2963793
    [85]
    张琮毅,魏子庄,徐昊文,等. 尺度可变的快速全局点云配准方法[J]. 计算机学报,2019,42(9):1939−1952

    Zhang Congyi, Wei Zizhuang, Xu Haowen, et al. Scale variable fast global point cloud registration[J]. Chinese Journal of Computers, 2019, 42(9): 1939−1952 (in Chinese)
    [86]
    Zeng Jin, Cheung G, Ng M, et al. 3D point cloud denoising using graph Laplacian regularization of a low dimensional manifold model[J]. IEEE Transactions on Image Processing, 2020, 29: 3474−3489 doi: 10.1109/TIP.2019.2961429
    [87]
    Hu Wei, Hu Qianjiang, Wang Zehua, et al. Dynamic point cloud denoising via manifold-to-manifold distance[J]. IEEE Transactions on Image Processing, 2021, 30: 6168−6183 doi: 10.1109/TIP.2021.3092826
    [88]
    Fu Zeqing, Hu Wei. Dynamic point cloud inpainting via spatial-temporal graph learning[J]. IEEE Transactions on Multimedia, 2021, 23: 3022−3034 doi: 10.1109/TMM.2021.3068606
    [89]
    Xu Yiqun, Hu Wei, Wang Shanshe, et al. Predictive generalized graph Fourier transform for attribute compression of dynamic point clouds[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1968−1982 doi: 10.1109/TCSVT.2020.3015901
    [90]
    Bayram E, Frossard P, Vural E, et al. Analysis of airborne LiDAR point clouds with spectral graph filtering[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(8): 1284−1288 doi: 10.1109/LGRS.2018.2834626
    [91]
    Wang Feipeng, Xiao Jun, Wang Ying. Efficient rock-mass point cloud registration using n-point complete graphs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9332−9343 doi: 10.1109/TGRS.2019.2926201
    [92]
    鲁斌,范晓明. 基于改进自适应k均值聚类的三维点云骨架提取的研究[J]. 自动化学报,2022,48(8):1994−2006

    Lu Bin, Fan Xiaoming. Research on 3D point cloud skeleton extraction based on improved adaptive k-means clustering[J]. Acta Automatica Sinica, 2022, 48(8): 1994−2006 (in Chinese)
    [93]
    Lu Min, Guo Yulan, Zhang Jun, et al. Recognizing objects in 3D point clouds with multi-scale local features[J]. Sensors (Switzerland), 2014, 14(12): 24156−24173 doi: 10.3390/s141224156
    [94]
    Rusu R B, Blodow N, Marton Z C, et al. Aligning point cloud views using persistent feature histograms [C] //Proc of 2008 IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2008: 3384−3391
    [95]
    Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration [C] //Proc of 2009 IEEE Int Conf on Robotics and Automation. Piscataway, NJ: IEEE, 2009: 3212−3217
    [96]
    Achlioptas P, Diamanti O, Mitliagkas I, et al. Learning representations and generative models for 3D point clouds [C] // Proc of the 35th Int Conf on Machine Learning (ICML). New York: ACM, 2018: 67−85
    [97]
    Bronstein M M, Bruna J, Lecun Y, et al. Geometric deep learning: Going beyond Euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18−42 doi: 10.1109/MSP.2017.2693418
    [98]
    Scarselli F, Gori M, Tsoi A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61−80 doi: 10.1109/TNN.2008.2005605
    [99]
    Hassani K, Haley M. Unsupervised multi-task feature learning on point clouds [C] //Proc of 2019 IEEE Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 8159−8170
    [100]
    Chen Siheng, Duan Chaojing, Yang Yaoqing, et al. Deep unsupervised learning of 3D point clouds via graph topology inference and filtering[J]. IEEE Transactions on Image Processing, 2020, 29: 3183−3198 doi: 10.1109/TIP.2019.2957935
    [101]
    Valsesia D, Fracastoro G, Magli E. Learning localized representations of point clouds with graph-convolutional generative adversarial networks[J]. IEEE Transactions on Multimedia, 2021, 23: 402−414 doi: 10.1109/TMM.2020.2976627
    [102]
    Zhang Cheng, Chen Hao, Wan Haocheng, et al. Graph-PBN: Graph-based parallel branch network for efficient point cloud learning[J]. Graphical Models, 2022, 119: 101120 doi: 10.1016/j.gmod.2021.101120
    [103]
    Zhang Kuangen, Hao Ming, Wang Jing, et al. Linked dynamic graph CNN: Learning on point cloud via linking hierarchical features [J]. arXiv preprint, arXiv: 1904.10014, 2019
    [104]
    Cui Yiming, Liu Xin, Liu Hongmin, et al. Geometric attentional dynamic graph convolutional neural networks for point cloud analysis[J]. Neurocomputing, 2021, 432: 300−310 doi: 10.1016/j.neucom.2020.12.067
    [105]
    Yang Yaoqing, Feng Chen, Shen Yiru, et al. FoldingNet: Point cloud auto-encoder via deep grid deformation [C] //Proc of 2018 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2018: 206−215
    [106]
    Valsesia D, Fracastoro G, Magli E. Learning localized generative models for 3D point clouds via graph convolution [C/OL] //Proc of the 7th Int Conf on Learning Representations (ICLR). 2019[2023-01-04]. https://openreview.net/forum?id=SJeXSo09FQ
    [107]
    Grilli E, Menna F, Remondino F. A review of point clouds segmentation and classification algorithms[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLII-2/W3: 339−344 doi: 10.5194/isprs-archives-XLII-2-W3-339-2017
    [108]
    Chen Chaofan, Qian Shengsheng, Fang Quan, et al. HAPGN: Hierarchical attentive pooling graph network for point cloud segmentation[J]. IEEE Transactions on Multimedia, 2021, 23: 2335−2346 doi: 10.1109/TMM.2020.3009499
    [109]
    Wang Weiyue, Yu R, Huang Qiangui, et al. SGPN: Similarity group proposal network for 3D point cloud instance segmentation [C] //Proc of 2018 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2018: 2569−2578
    [110]
    Zhou Yin, Tuzel O. VoxelNet: End-to-end learning for point cloud based 3D object detection [C] //Proc of 2018 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2018: 4490−4499
    [111]
    Ren Shaoqing, He Kaiming, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [C] //Proc of 2015 Conf on Neural Information Processing Systems (NeurIPS). Cambridge, MA: MIT, 2015: 91−99
    [112]
    Shi Weijing, Rajkumar R. Point-GNN: Graph neural network for 3D object detection in a point cloud [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 1708−1716
    [113]
    Pan Guanghua, Wang Jun, Ying Rendong, et al. 3DTI-Net: Learn inner transform invariant 3D geometry features using dynamic GCN [J]. arXiv preprint, arXiv: 1812.06254, 2018
    [114]
    Chen Chao, Li Guanbin, Xu Ruijia, et al. ClusterNet: Deep hierarchical cluster network with rigorously rotation-invariant representation for point cloud analysis [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 4989−4997
    [115]
    Liu Jinxian, Ni Bingbing, Li Caiyuan, et al. Dynamic points agglomeration for hierarchical point sets learning [C] //Proc of 2019 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 7545−7554
    [116]
    单铉洋,孙战里,曾志刚. RFNet:用于三维点云分类的卷积神经网络[J]. 自动化学报,2023,49(11): 2350−2359

    Shan Xuanyang, Sun Zhanli, Zeng Zhigang. RFNet: Convolutional neural network for 3D point cloud classification [J]. Acta Automatica Sinica, 2023, 49(11): 2350−2359 (in Chinese)
    [117]
    Guo Rui, Zhou Yong, Zhao Jiaqi, et al. Point cloud classification by dynamic graph CNN with adaptive feature fusion[J]. IET Computer Vision, 2021, 15(3): 235−244 doi: 10.1049/cvi2.12039
    [118]
    Fan Zhaoxin, Liu Hongyan, He Jun, et al. A graph-based one-shot learning method for point cloud recognition[J]. Computer Graphics Forum, 2020, 39(7): 313−323 doi: 10.1111/cgf.14147
    [119]
    Li Zhuqiang, Zhang Liqiang, Tong Xiaohua, et al. A three-step approach for TLS point cloud classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5412−5424 doi: 10.1109/TGRS.2016.2564501
    [120]
    Jiang Li, Zhao Hengshuang, Liu Shu, et al. Hierarchical point-edge interaction network for point cloud semantic segmentation [C] //Proc of 2019 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2019: 10432−10440
    [121]
    Khan S A, Shi Yilei, Shahzad M, et al. FGCN: Deep feature-based graph convolutional network for semantic segmentation of urban 3D point clouds [C] // Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). Los Alamitos, CA: IEEE Computer Society, 2020: 778−787
    [122]
    Li Ying, Ma Lingfei, Zhong Zilong, et al. TGNet: Geometric graph CNN on 3D point cloud segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3588−3600 doi: 10.1109/TGRS.2019.2958517
    [123]
    Sun Yuliang, Miao Yongwei, Chen Jiazhou, et al. PGCNet: Patch graph convolutional network for point cloud segmentation of indoor scenes[J]. The Visual Computer, 2020, 36(10): 2407−2418
    [124]
    Previtali M, Díaz-Vilariño L, Scaioni M. Indoor building reconstruction from occluded point clouds using graph-cut and ray-tracing[J]. Applied Sciences, 2018, 8(9): 1529 doi: 10.3390/app8091529
    [125]
    Sedlácek D, Zara J. Graph cut based point-cloud segmentation for polygonal reconstruction [C] //Proc of the 5th Int Symp on Advances in Visual Computing: Part II. Berlin: Springer, 2009: 218−227
    [126]
    Pan Rongjiang, Taubin G. Automatic segmentation of point clouds from multi-view reconstruction using graph-cut[J]. The Visual Computer, 2016, 32(5): 601−609 doi: 10.1007/s00371-015-1076-0
    [127]
    Luo Huan, Wang Cheng, Wen Chenglu, et al. Patch-based semantic labeling of road scene using colorized mobile LiDAR point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1286−1297 doi: 10.1109/TITS.2015.2499196
    [128]
    Ben-Shabat Y, Avraham T, Lindenbaum M, et al. Graph based over-segmentation methods for 3D point clouds[J]. Computer Vision and Image Understanding, 2018, 174: 12−23 doi: 10.1016/j.cviu.2018.06.004
    [129]
    Te Gusi, Hu Wei, Zheng Amin, et al. RGCNN: Regularized graph CNN for point cloud segmentation [C] //Proc of the 26th ACM Int Conf on Multimedia (MM). New York: ACM, 2018: 746−754
    [130]
    Xu Sheng, Wang Ruisheng, Wang Hao, et al. An optimal hierarchical clustering approach to mobile LiDAR point clouds[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(7): 2765−2776 doi: 10.1109/TITS.2019.2912455
    [131]
    Golovinskiy A, Kim V G, Funkhouser T. Shape-based recognition of 3D point clouds in urban environments [C] //Proc of 2009 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2009: 2154−2161
    [132]
    Nieuwenhuisen M, Stückler J, Berner A, et al. Shape-primitive based object recognition and grasping [C/OL] //Proc of the 7th German Conf on Robotics (ROBOTIK). 2012: 468−472.[2023-01-04]. https://api.semanticscholar.org/CorpusID:14393050
    [133]
    Berner A, Li Jun, Holz D, et al. Combining contour and shape primitives for object detection and pose estimation of prefabricated parts [C] //Proc of 2013 IEEE Int Conf on Image Processing. Piscataway, NJ: IEEE, 2013: 3326−3330
    [134]
    Hao Wen, Wang Yinghui. Structure-based object detection from scene point clouds[J]. Neurocomputing, 2016, 191: 148−160 doi: 10.1016/j.neucom.2015.12.101
    [135]
    孙晓鹏,李思慧,王璐,等. 耳廓点云形状特征匹配的路径跟随算法[J]. 软件学报,2015,26(5):1251−1264

    Sun Xiaopeng, Li Sihui, Wang Lu, et al. Shape feature matching algorithm of ear point cloud using path following[J]. Journal of Software, 2015, 26(5): 1251−1264 (in Chinese)
    [136]
    Chen Jintai, Lei Biwen, Song Qingyu, et al. A hierarchical graph network for 3D object detection on point clouds [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 389−398
    [137]
    Zhang Yanan, Huang Di, Wang Yunhong. PC-RGNN: Point cloud completion and graph neural network for 3D object detection [C] //Proc of the 35th AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2021: 3430−3437
    [138]
    Yin Junbo, Shen Jianbing, Gao Xin, et al. Graph neural network and spatiotemporal transformer attention for 3D video object detection from point clouds [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 45(8): 9822−9835
    [139]
    Feng Mingtao, Gilani S Z, Wang Yaonan, et al. Relation graph network for 3D object detection in point clouds[J]. IEEE Transactions on Image Processing, 2021, 30: 92−107 doi: 10.1109/TIP.2020.3031371
    [140]
    Wu Zhirong, Song Shuran, Khosla A, et al. 3D ShapeNets: A deep representation for volumetric shapes [C] //Proc of 2015 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2015: 1912−1920
    [141]
    Princeton University. Princeton ModelNet project dataset [EB/OL]. [2023-01-04]. http://modelnet.cs.princeton.edu/
    [142]
    Chang A X, Funkhouser T, Guibas L, et al. ShapeNet: An information-rich 3D model repository [J]. arXiv preprint, arXiv: 1512.03012, 2015
    [143]
    Chang A X, Funkhouser T, Guibas L, et al. ShapeNet dataset [EB/OL]. [2023-01-04]. https://shapenet.org/
    [144]
    Armeni I, Sener O, Zamir A R, et al. 3D semantic parsing of large-scale indoor spaces [C] //Proc of 2016 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2016: 1534−1543
    [145]
    Stanford University. S3DIS dataset [EB/OL]. [2023-01-04]. http://buildingparser.stanford.edu/
    [146]
    Hua B S, Pham Q H, Nguyen D T, et al. SceneNN: A scene meshes dataset with annotations [C] //Proc of the 4th Int Conf on 3D Vision (3DV). Piscataway, NJ: IEEE, 2016: 92−101
    [147]
    Hua B S, Pham Q H, Nguyen D T, et al. SceneNN dataset [EB/OL]. [2023-01-04]. http://www.scenenn.net/
    [148]
    Mccormac J, Handa A, Leutenegger S, et al. SceneNet RGB-D: Can 5M synthetic images beat generic ImageNet pre-training on indoor segmentation [C] //Proc of 2017 IEEE Int Conf on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2017: 2697−2706
    [149]
    Mccormac J, Handa A, Leutenegger S, et al. SceneNet dataset [EB/OL]. [2023-01-04]. https://robotvault.bitbucket.io/scenenet-rgbd.html
    [150]
    Dai A, Chang A X, Savva M, et al. ScanNet: Richly-annotated 3D reconstructions of indoor scenes [C] //Proc of 2017 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017: 2432−2443
    [151]
    Dai A, Chang A X, Savva M, et al. ScanNet dataset [EB/OL]. [2023-01-04]. http://www.scan-net.org/
    [152]
    Hackel T, Savinov N, Ladicky L, et al. Semantic3D. Net: A new large-scale point cloud classification benchmark[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, IV-1/W1: 91−98
    [153]
    Hackel T, Savinov N, Ladicky L, et al. Semantic3D dataset [EB/OL]. [2023-01-04]. http://www.semantic3d.net/
    [154]
    Geiger A, Lenz P, Urtasun R. KITTI dataset [EB/OL]. [2023-01-04]. http://www.cvlibs.net/datasets/kitti
    [155]
    Caesar H, Bankiti V, Lang A H, et al. NuScenes: A multimodal dataset for autonomous driving [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 11618−11628
    [156]
    Caesar H, Bankiti V, Lang A H, et al. NuScenes dataset [EB/OL]. [2023-01-04]. https://nuscenes.org/
    [157]
    Sun Pei, Kretzschmar H, Dotiwalla X, et al. Scalability in perception for autonomous driving: Waymo open dataset [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 2443−2451
    [158]
    Sun Pei, Kretzschmar H, Dotiwalla X, et al. Waymo dataset [EB/OL]. [2023-01-04]. http://www.waymo.com/open
    [159]
    Mao Jiageng, Niu Minzhe, Jiang Chenhan, et al. One million scenes for autonomous driving: ONCE dataset [J]. arXiv preprint, arXiv: 2106.11037, 2021
    [160]
    Mao Jiageng, Niu Minzhe, Jiang Chenhan, et al. ONCE dataset [EB/OL]. [2023-01-04]. https://once-for-auto-driving.github.io/index.html
    [161]
    许翔,帅惠,刘青山. 基于卦限卷积神经网络的3D点云分析[J]. 自动化学报,2021,47(12):2791−2800

    Xu Xiang, Shuai Hui, Liu Qingshan. Octant convolutional neural network for 3D point cloud analysis[J]. Acta Automatica Sinica, 2021, 47(12): 2791−2800 (in Chinese)
    [162]
    王俊,朱利. 基于图像匹配-点云融合的建筑物立面三维重建[J]. 计算机学报,2012,35(10):2072−2079 doi: 10.3724/SP.J.1016.2012.02072

    Wang Jun, Zhu Li. 3D Building facade reconstruction based on image matching-point cloud fusing[J]. Chinese Journal of Computers, 2012, 35(10): 2072−2079 (in Chinese) doi: 10.3724/SP.J.1016.2012.02072
    [163]
    Qi C R, Chen Xinlei, Litany O, et al. ImVoteNet: Boosting 3D object detection in point clouds with image votes [C] //Proc of 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 4403−4412
    [164]
    Cui Yaodong, Chen Ren, Chu Wenbo, et al. Deep learning for image and point cloud fusion in autonomous driving: A review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 722−739 doi: 10.1109/TITS.2020.3023541
    [165]
    Felzenszwalb P F, Huttenlocher D P. Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59(2): 167−181 doi: 10.1023/B:VISI.0000022288.19776.77
    [166]
    Boykov Y, Funka-Lea G. Graph cuts and efficient N-D image segmentation[J]. International Journal of Computer Vision, 2006, 70(2): 109−131 doi: 10.1007/s11263-006-7934-5
    [167]
    Chen Zhaomin, Wei Xiushen, Wang Peng, et al. Multi-label image recognition with graph convolutional networks [C] //Proc of 2019 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2019: 5172−5181
    [168]
    Hong Danfeng, Gao Lianru, Yao Jing, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5966−5978 doi: 10.1109/TGRS.2020.3015157
    [169]
    张帆,黄先锋,方伟,等. 基于兴趣边缘优化的壁画影像与激光扫描数据非刚性配准[J]. 中国科学:信息科学,2012,42(4):493−503 doi: 10.1360/zf2012-42-4-493

    Zhang Fan, Huang Xianfeng, Fang Wei, et al. Non-rigid registration of mural images and laser scanning data based on the optimization of the edges of interest[J]. SCIENTIA SINICA Informationis, 2012, 42(4): 493−503 (in Chinese) doi: 10.1360/zf2012-42-4-493
    [170]
    Wu Gang, Li Bin, Zhu Qibing, et al. Using color and 3D geometry features to segment fruit point cloud and improve fruit recognition accuracy[J]. Computers and Electronics in Agriculture, 2020, 174: 105475 doi: 10.1016/j.compag.2020.105475
    [171]
    Quintana B, Prieto S A, Adan A, et al. Door detection in 3D coloured point clouds of indoor environments[J]. Automation in Construction, 2018, 85: 146−166 doi: 10.1016/j.autcon.2017.10.016
    [172]
    Ouyang Zhenchao, Dong Xiaoyun, Cui Jiahe, et al. PV-EncoNet: Fast object detection based on colored point cloud[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12439−12450 doi: 10.1109/TITS.2021.3114062
    [173]
    张凌明,赵悦,李鹏程,等. 基于局部注意力机制的三维牙齿模型分割网络[J]. 电子学报,2022,50(3):681−690

    Zhang Lingming, Zhao Yue, Li Pengcheng, et al. Dental model segmentation network based on local attention mechanism[J]. Acta Electronica Sinica, 2022, 50(3): 681−690 (in Chinese)
    [174]
    李诗锐,李琪,李海洋,等. 基于Kinect v2的实时精确三维重建系统[J]. 软件学报,2016,27(10):2519−2529

    Li Shirui, Li Qi, Li Haiyang, et al. Real-time accurate 3D reconstruction based on Kinect v2[J]. Journal of Software, 2016, 27(10): 2519−2529 (in Chinese)
    [175]
    王筱婷,王璐,孟祥旭. 带洞点云多层同步表面重建方法[J]. 软件学报,2016,27(10):2642−2653

    Wang Xiaoting, Wang Lu, Meng Xiangxu. Multi-layers surface reconstruction method for point set with holes[J]. Journal of Software, 2016, 27(10): 2642−2653 (in Chinese)
    [176]
    邓磊,陈宝华,赖伟良,等. 三维监控系统中基于三维重构的交互式标定[J]. 电子学报,2017,45(3):527−533

    Deng Lei, Chen Baohua, Lai Weiliang, et al. Interactive calibrating 3D surveillance system based on 3D reconstruction[J]. Acta Electronica Sinica, 2017, 45(3): 527−533 (in Chinese)
    [177]
    俞毓锋,赵卉菁. 基于相机与摇摆激光雷达融合的非结构化环境定位[J]. 自动化学报,2019,45(9):1791−1798

    Yu Yufeng, Zhao Huijing. Off-road localization using monocular camera and nodding LiDAR[J]. Acta Automatica Sinica, 2019, 45(9): 1791−1798 (in Chinese)
    [178]
    张峻宁,苏群星,刘鹏远,等. 一种自适应特征地图匹配的改进VSLAM算法[J]. 自动化学报,2019,45(3):553−565

    Zhang Junning, Su Qunxing, Liu Pengyuan, et al. An improved VSLAM algorithm based on adaptive feature map[J]. Acta Automatica Sinica, 2019, 45(3): 553−565 (in Chinese)
    [179]
    郭复胜,高伟,胡占义. 无人机图像全自动生成大比例尺真正射影像方法[J]. 中国科学:信息科学,2013,43(11):1383−1397 doi: 10.1360/112012-591

    Guo Fusheng, Gao Wei, Hu Zhanyi. Automatic generation of large scale true ortho-image from UAV images[J]. SCIENTIA SINICA Informationis, 2013, 43(11): 1383−1397 (in Chinese) doi: 10.1360/112012-591
  • Related Articles

    [1]Zhou Yuanding, Gao Guopeng, Fang Yaodong, Qin Chuan. Perceptual Authentication Hashing with Image Feature Fusion Based on Window Self-Attention[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202330669
    [2]Gao Wei, Chen Liqun, Tang Chunming, Zhang Guoyan, Li Fei. One-Time Chameleon Hash Function and Its Application in Redactable Blockchain[J]. Journal of Computer Research and Development, 2021, 58(10): 2310-2318. DOI: 10.7544/issn1000-1239.2021.20210653
    [3]Wu Linyang, Luo Rong, Guo Xueting, Guo Qi. Partitioning Acceleration Between CPU and DRAM: A Case Study on Accelerating Hash Joins in the Big Data Era[J]. Journal of Computer Research and Development, 2018, 55(2): 289-304. DOI: 10.7544/issn1000-1239.2018.20170842
    [4]Jiang Jie, Yang Tong, Zhang Mengyu, Dai Yafei, Huang Liang, Zheng Lianqing. DCuckoo: An Efficient Hash Table with On-Chip Summary[J]. Journal of Computer Research and Development, 2017, 54(11): 2508-2515. DOI: 10.7544/issn1000-1239.2017.20160795
    [5]Wang Wendi, Tang Wen, Duan Bo, Zhang Chunming, Zhang Peiheng, Sun Ninghui. Parallel Accelerator Design for High-Throughput DNA Sequence Alignment with Hash-Index[J]. Journal of Computer Research and Development, 2013, 50(11): 2463-2471.
    [6]Yuan Xinpan, Long Jun, Zhang Zuping, Luo Yueyi, Zhang Hao, and Gui Weihua. Connected Bit Minwise Hashing[J]. Journal of Computer Research and Development, 2013, 50(4): 883-890.
    [7]Qin Chuan, Chang Chin Chen, Guo Cheng. Perceptual Robust Image Hashing Scheme Based on Secret Sharing[J]. Journal of Computer Research and Development, 2012, 49(8): 1690-1698.
    [8]Ding Zhenhua, Li Jintao, Feng Bo. Research on Hash-Based RFID Security Authentication Protocol[J]. Journal of Computer Research and Development, 2009, 46(4): 583-592.
    [9]Li Zhiqiang, Chen Hanwu, Xu Baowen, Liu Wenjie. Fast Algorithms for Synthesis of Quantum Reversible Logic Circuits Based on Hash Table[J]. Journal of Computer Research and Development, 2008, 45(12): 2162-2171.
    [10]Liu Ji. One-Way Hash Function based on Integer Coupled Tent Maps and Its Performance Analysis[J]. Journal of Computer Research and Development, 2008, 45(3): 563-569.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return