• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Jia Jinping, Xiao Shihan, Qian Kun, Yang Yanqin, Zhang Zhao. Survey of Risk Perception Technology for Web 3.0 Digital Economic[J]. Journal of Computer Research and Development, 2024, 61(12): 3005-3026. DOI: 10.7544/issn1000-1239.202330298
Citation: Jia Jinping, Xiao Shihan, Qian Kun, Yang Yanqin, Zhang Zhao. Survey of Risk Perception Technology for Web 3.0 Digital Economic[J]. Journal of Computer Research and Development, 2024, 61(12): 3005-3026. DOI: 10.7544/issn1000-1239.202330298

Survey of Risk Perception Technology for Web 3.0 Digital Economic

Funds: This work was supported by the National Natural Science Foundation of China (61972152) and the Program of Shanghai Leading Talent Program of Eastern Talent Plan (23XD1401100).
More Information
  • Author Bio:

    Jia Jinping: born in 1996. PhD candidate. Her main research interests include blockchain, distributed databases, and location-based service

    Xiao Shihan: born in 2000. Master candidate. Her main research interests include blockchain and distributed databases

    Qian Kun: born in 1999. Master candidate. His main research interests include blockchain and distributed databases

    Yang Yanqin: born in 1977. PhD, associate professor. Senior member of CCF. Her main research interests include compilation optimization, embedded system, and blockchain technology

    Zhang Zhao: born in 1977. PhD, professor, PhD supervisor. Senior member of CCF. Her main research interests include distributed databases and blockchain data management

  • Received Date: April 05, 2023
  • Revised Date: August 14, 2023
  • Available Online: March 13, 2024
  • The Web 3.0 digital economic system takes the blockchain platform as its infrastructure, and revolves around the digital assets such as cryptocurrencies, NFTs, digital collectibles, and decentralized applications (DApps) like decentralized finance (DeFi) and gaming finance (GameFi) to conduct various socio-economic activities. Smart contracts are the core of DApps on the public blockchains and the public permissioned blockchains, such as Ethereum, Solana, EOSIO, Findora, Antchain, ChainMaker, et al. Smart contracts can be deployed by any individual or organization, and are visible and accessible to all blockchain users. This openness brings new opportunities for economic development while also harboring numerous financial risks. We analyze potential risks for Web 3.0 digital economic by focusing on smart contract and summarize the current research on risk perception technology from three aspects: encoding, functionality, and application of smart contracts. We first introduce the research challenges, security vulnerability types, and four categories of vulnerability detection methods in smart contract vulnerability detection technology. Next, we analyze common types of smart contract scams and summarize existing scam recognition techniques based on different classifications of training data. Subsequently, we introduce the current state of technology for detecting four types of illicit transactions behaviors based on blockchain transaction records. Lastly, by analyzing the limitations of existing work, we envision the future research directions.

  • [1]
    Shannon V. A more revolutionary Web[EB/OL]. (2006-03-01)[2023-03-21].https://www.nytimes.com/2006/05/23/technology/23iht-web.html
    [2]
    Berners-Lee T, Hendler J, Lassila O. The semantic web[J]. Scientific American, 2001, 284(5): 34−43 doi: 10.1038/scientificamerican0501-34
    [3]
    Maclntyre B, Smith T F. Thoughts on the future of WebXR and the immersive Web[C]//Proc of the 2018 IEEE Int Symp on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). Piscataway, NJ: IEEE, 2018: 338−342
    [4]
    Wood G. Dapps: What Web 3.0 looks like[EB/OL]. (2014-04-17)[2023-03-15].https://gavwood.com/dappsweb3.html
    [5]
    Nakamoto S. Bitcoin: A peer-to-peer electronic cash system[EB/OL].[2023-03-20]. http://www.bitcoin.org/bitcoin.pdf
    [6]
    Buterin V. A next-generation smart contract and decentralized application platform[EB/OL]. (2018-02-08)[2023-03-15].https://ethereum.org/en/whitepaper/
    [7]
    国家信息中心. BSN 开放联盟链[EB/OL].[2023-03-18]. https://opb.bsnbase.com/main/index

    The State Information Center. BSN open permissioned blockchain[EB/OL].[2023-03-18]. https://opb.bsnbase.com/main/index (in Chinese) (
    [8]
    基金会. MakerDAO[EB/OL].[2023-03-18].https://makerdao.com/zh-CN/

    The Maker Foundation. MakerDAO[EB/OL].[2023-03-18].https://makerdao.com/zh-CN/ (in Chinese) (Maker
    [9]
    Siegel D. The DAO attack: Understanding what happened[EB/OL]. (2016-06-25)[2023-03-26].https://www.coindesk.com/learn/understanding-the-dao-attac/
    [10]
    Reuters. Bitcoin exchange of Hong Kong suffers from hacker theft and losses of approximately $72 million[EB/OL]. (2016-08-03)[2023-03-26].https://www.reuters.com/article/bitcoin-hacking-updates-0803-idCNKCS10E10I
    [11]
    United States Department of the Treasury. U. S. treasury sanctions notorious virtual currency mixer Tornado. Cash[EB/OL]. (2022-08-08)[2023-03-28].https://home.treasury.gov/news/press-releases/jy0916
    [12]
    United States Securities and Exchange Commission. SEC charges eleven individuals in $300 million crypto pyramid scheme[EB/OL]. (2022-08-01)[2023-03-28].https://www.sec.gov/news/press-release/2022-134
    [13]
    以太坊基金会. 去中心化应用(DAPPS)[EB/OL].[2023-02-28].https://ethereum.org/zh/dapps/#what-are-dapps

    The Ethereum Foundation. Decentralized application (DAPPS)[EB/OL].[2023-02-28].https://ethereum.org/zh/dapps/#what-are-dapps (in Chinese) (
    [14]
    Chen Chuan, Zhang Lei, Li Yihao, et al. When digital economy meets web 3.0: Applications and challenges[J]. IEEE Open Journal of the Computer Society, 2022, 3: 233−245 doi: 10.1109/OJCS.2022.3217565
    [15]
    Huang Huawei, Kong Wei, Zhou Sicong, et al. A survey of state-of-the-art on blockchains: Theories, modelings, and tools[J]. ACM Computing Surveys, 2021, 54(2): 1−42
    [16]
    Wu Jiajing, Lin Kaixin, Lin Dan, et al. Financial crimes in Web3-empowered metaverse: Taxonomy, countermeasures, and opportunities[J]. IEEE Open Journal of the Computer Society, 2023, 4: 37−49 doi: 10.1109/OJCS.2023.3245801
    [17]
    陈伟利,郑子彬. 区块链数据分析:现状、趋势与挑战[J]. 计算机研究与发展,2018,55(9):1853−1870 doi: 10.7544/issn1000-1239.2018.20180127

    Chen Weili, Zheng Zibin. Blockchain data analysis: A review of status, trends and challenges[J]. Journal of Computer Research and Development, 2018, 55(9): 1853−1870 (in Chinese) doi: 10.7544/issn1000-1239.2018.20180127
    [18]
    魏松杰,吕伟龙,李莎莎. 区块链公链应用的典型安全问题综述[J]. 软件学报,2022,33(1):324−355

    Wei Songjie, Lü Weilong, Li Shasha. Overview on typical security problems in public blockchain applications[J]. Journal of Software, 2022, 33(1): 324−355 (in Chinese)
    [19]
    Tolmach P, Li Yi, Lin Shangwei, et al. A survey of smart contract formal specification and verification[J]. ACM Computing Surveys, 2021, 54(7): 1−38
    [20]
    钱鹏,刘振广,何钦铭,等. 智能合约安全漏洞检测技术研究综述[J]. 软件学报,2022,33(8):3059−3085

    Qian Peng, Liu Zhenguang, He Qinming, et al. Smart contract vulnerability detection technique: A survey[J]. Journal of Software, 2022, 33(8): 3059−3085 (in Chinese)
    [21]
    Cui Siwei, Zhao Gang, Gao Yifei, et al. VRust: Automated vulnerability detection for Solana smart contracts[C]//Proc of the 2022 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2022: 639−652
    [22]
    He Ningyu, Zhang Ruiyi, Wang Haoyu, et al. EOSAFE: Security analysis of EOSIO smart contracts[C]//Proc of the 30th USENIX Security Symp. Berkeley, CA: USENIX Association, 2021: 1271−1288
    [23]
    Luu L, Chu D H, Olickel H, et al. Making smart contracts smarter[C]//Proc of the 2016 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2016: 254−269
    [24]
    Krupp J, Rossow C. TEEHER: Gnawing at Ethereum to automatically exploit smart contracts[C]//Proc of the 27th USENIX Security Symp (USENIX Security 18). Berkeley, CA: USENIX Association, 2018: 1317−1333
    [25]
    Bose P, Das D, Chen Yanju, et al. Sailfish: Vetting smart contract state-inconsistency bugs in seconds[C]//Proc of the 2022 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2022: 161−178
    [26]
    Ye Jiaming, Ma Mingliang, Lin Yun, et al. Vulpedia: Detecting vulnerable Ethereum smart contracts via abstracted vulnerability signatures[J]. Journal of Systems and Software, 2022, 192: 111410 doi: 10.1016/j.jss.2022.111410
    [27]
    Liao Zeqin, Zheng Zibin, Chen Xiao, et al. SmartDagger: A bytecode-based static analysis approach for detecting cross-contract vulnerability[C]//Proc of the 31st ACM SIGSOFT Int Symp on Software Testing and Analysis. New York: ACM, 2022: 752−764
    [28]
    Zheng Peilin, Zheng Zibin, Luo Xiapu. Park: Accelerating smart contract vulnerability detection via parallel-fork symbolic execution[C]//Proc of the 31st ACM SIGSOFT Int Symp on Software Testing and Analysis. New York: ACM, 2022: 740−751
    [29]
    Rodler M, Li Wenting, Karame G O, et al. EVMPatch: Timely and automated patching of Ethereum smart contracts[C]//Proc of the 30th USENIX Security Symp. Berkeley, CA: USENIX Association, 2021: 1289−1306
    [30]
    Nguyen T D, Pham L H, Sun Jun. SGUARD: Towards fixing vulnerable smart contracts automatically[C]//Proc of the 2021 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2021: 1215−1229
    [31]
    Rossini M, Zichichi M, Ferretti S. Smart contracts vulnerability classification through deep learning[C]//Proc of the 20th ACM Conf on Embedded Networked Sensor Systems. New York: ACM, 2022: 1229−1230
    [32]
    Gao Zhipeng, Jayasundara V, Jiang Lingxiao, et al. Smartembed: A tool for clone and bug detection in smart contracts through structural code embedding[C]//Proc of the 2019 IEEE Int Conf on Software Maintenance and Evolution (ICSME). Piscataway, NJ: IEEE, 2019: 394−397
    [33]
    Qian Peng, Liu Zhenguang, He Qinming, et al. Towards automated reentrancy detection for smart contracts based on sequential models[J]. IEEE Access, 2020, 8: 19685−19695 doi: 10.1109/ACCESS.2020.2969429
    [34]
    Huang Jianjun, Han Songming, You Wei, et al. Hunting vulnerable smart contracts via graph embedding based bytecode matching[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2144−2156 doi: 10.1109/TIFS.2021.3050051
    [35]
    Nguyen H H, Nguyen N M, Doan H P, et al. MANDO-GURU: Vulnerability detection for smart contract source code by heterogeneous graph embeddings[C]//Proc of the 30th ACM Joint European Software Engineering Conf and Symp on the Foundations of Software Engineering. New York: ACM, 2022: 1736−1740
    [36]
    Zhuang Yuan, Liu Zhenguang, Qian Peng, et al. Smart contract vulnerability detection using graph neural network[C]//Proc of the 29th Int Joint Conf on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2020: 3283−3290
    [37]
    Wu Hongjun, Zhang Zhuo, Wang Shangwen, et al. Peculiar: Smart contract vulnerability detection based on crucial data flow graph and pre-training techniques[C]//Proc of the 32nd IEEE Int Symp on Software Reliability Engineering (ISSRE). Piscataway, NJ: IEEE, 2021: 378−389
    [38]
    Zhang Lejun, Wang Jinlong, Wang Weizheng, et al. Smart contract vulnerability detection combined with multi-objective detection[J]. Computer Networks, 2022, 217: 109289 doi: 10.1016/j.comnet.2022.109289
    [39]
    Cai Jie, Li Bin, Zhang Jiale, et al. Combine sliced joint graph with graph neural networks for smart contract vulnerability detection[J]. Journal of Systems and Software, 2023, 195: 111550 doi: 10.1016/j.jss.2022.111550
    [40]
    Jiao Jiao, Kan Shuanglong, Lin Shangwei, et al. Semantic understanding of smart contracts: Executable operational semantics of solidity[C]//Proc of the 2020 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2020: 1695−1712
    [41]
    Permenev A, Dimitrov D, Tsankov P, et al. VerX: Safety verification of smart contracts[C]//Proc of the 2020 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2020: 1661−1677
    [42]
    Schneidewind C, Grishchenko I, Scherer M, et al. eThor: Practical and provably sound static analysis of Ethereum smart contracts[C]//Proc of the 2020 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2020: 621−640
    [43]
    Frank J, Aschermann C, Holz T. ETHBMC: A bounded model checker for smart contracts[C]//Proc of the 29th USENIX Conf on Security Symp. Berkeley, CA: USENIX Association, 2020: 2757−2774
    [44]
    So S, Lee M, Park J, et al. VeriSmart: A highly precise safety verifier for Ethereum smart contracts[C]//Proc of the 2020 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2020: 1678−1694
    [45]
    Samreen N F, Alalfi M H. SmartScan: An approach to detect denial of service vulnerability in Ethereum smart contracts[C]//Proc of the 4th IEEE/ACM Int Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB). Piscataway, NJ: IEEE, 2021: 17−26
    [46]
    Liu Zhenguang, Qian Peng, Qang Xiang, et al. Smart contract vulnerability detection: From pure neural network to interpretable graph feature and expert pattern fusion[C]//Proc of the 30th Int Joint Conf on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2021: 2751−2759
    [47]
    Liu Zhenguang, Qian Peng, Wang Xiaoyang, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(2): 1296−1310
    [48]
    Tang D, Qin B, Feng X, et al. Effective LSTMs for target-dependent sentiment classification[J]. arXiv preprint, arXiv: 1512.01100, 2015
    [49]
    Tian Gang, Wang Qibo, Zhao Yi, et al. Smart contract classification with a Bi-LSTM based approach[J]. IEEE Access, 2020, 8: 43806−43816 doi: 10.1109/ACCESS.2020.2977362
    [50]
    Chen Yizhou, Dai Heng, Yu Xiao, et al. Improving Ponzi scheme contract detection using multi-channel TextCNN and transformer[J]. Sensors, 2021, 21(19): 6417 doi: 10.3390/s21196417
    [51]
    He Xuezhi, Yang Tan, Chen Liping. CTRF: Ethereum-based Ponzi contract identification[EB/OL].[2023-03-28].https://www.hindawi.com/journals/scn/2022/1554752/
    [52]
    Ishimaki M, Omote K. Ethereum contract honeypot risk analysis[C]//Proc of the 5th Int Conf on Frontiers in Cyber Security (FCS). Berlin: Springer, 2022: 226−240
    [53]
    Hu Teng, Liu Xiaolei, Chen Ting, et al. Transaction-based classification and detection approach for Ethereum smart contract[J]. Information Processing & Management, 2021, 58(2): 102462
    [54]
    黄步添,刘琦,何钦铭,等. 基于语义嵌入模型与交易信息的智能合约自动分类系统[J]. 自动化学报,2017,43(9):1532−1543

    Huang Butian, Liu Qi, He Qinming, et al. Towards automatic smart-contract codes classification by means of word embedding model and transaction information[J]. Acta Automatica Sinica, 2017, 43(9): 1532−1543 (in Chinese)
    [55]
    Jin Chengxiang, Zhou Jiajun, Jin Jie, et al. Time-aware metapath feature augmentation for Ponzi detection in Ethereum[J]. arXiv preprint, arXiv: 2210.16863, 2022
    [56]
    Camino R, Torres C F, Baden M, et al. A data science approach for honeypot detection in Ethereum[J]. arXiv preprint, arXiv: 1910.01449, 2019
    [57]
    Fan Shuhui, Fu Shaojing, Luo Yuchuan, et al. Smart contract scams detection with topological data analysis on account interaction[C]//Proc of the 31st ACM Int Conf on Information & Knowledge Management. New York: ACM, 2022: 468−477
    [58]
    Wang Lei, Cheng Hao, Zheng Zibin, et al. Ponzi scheme detection via oversampling-based long short-term memory for smart contracts[J]. Knowledge-Based Systems, 2021, 228: 107312 doi: 10.1016/j.knosys.2021.107312
    [59]
    Jin Jie, Zhou Jiajun, Jin Chengxiang, et al. Dual-channel early warning framework for Ethereum Ponzi schemes[C]//Proc of the 7th Big Data and Social Computing China National Conf. Berlin: Springer, 2022: 260−274
    [60]
    Bartoletti M, Carta S, Cimoli T, et al. Dissecting Ponzi schemes on Ethereum: Identification, analysis, and impact[J]. Future Generation Computer Systems, 2020, 102: 259−277 doi: 10.1016/j.future.2019.08.014
    [61]
    Zheng Zibing, Chen Weili, Zhong Zhijie, et al. Securing the Ethereum from smart Ponzi schemes: Identification using static features[EB/OL].[2023-03-18]. https://dl.acm.org/doi/abs/10.1145/3571847
    [62]
    Lou Yincheng, Zhang Yanmei, Chen Shiping. Ponzi contracts detection based on improved convolutional neural network[C]//Proc of the 2020 IEEE Int Conf on Services Computing (SCC). Piscataway, NJ: IEEE, 2020: 353−360
    [63]
    Hara K, Takahashi T, Ishimaki M, et al. Machine-learning approach using solidity bytecode for smart-contract honeypot detection in the Ethereum[C]//Proc of the 21st IEEE Int Conf on Software Quality, Reliability and Security Companion (QRS-C). Piscataway, NJ: IEEE, 2021: 652−659
    [64]
    Shi Chaochen, Xiang Yong, Yu Jiangshan, et al. A bytecode-based approach for smart contract classification[C]//Proc of the 2022 IEEE Int Conf on Software Analysis, Evolution and Reengineering (SANER). Piscataway, NJ: IEEE, 2022: 1046−1054
    [65]
    林丹,林凯欣,吴嘉婧,等. 基于字节码的以太坊智能合约分类方法[J]. 网络与信息安全学报,2022,8(5):111−120 doi: 10.11959/j.issn.2096-109x.2022046

    Lin Dan, Lin Kaixin, Wu Jiajing, et al. Bytecode-based approach for Ethereum smart contract classification[J]. Chinese Journal of Network and Information Security, 2022, 8(5): 111−120 (in Chinese) doi: 10.11959/j.issn.2096-109x.2022046
    [66]
    Hu Huiwen, Bai Qianlan, Xu Yuedong. SCSGuard: Deep scam detection for Ethereum smart contracts[EB/OL].[2023-03-28].https://ieeexplore.ieee.org/abstract/document/9798296
    [67]
    Peng Jianxi, Xiao Guijiao. Detection of smart Ponzi schemes using opcode[C]//Proc of the 2nd Blockchain and Trustworthy Systems Int Conf. Berlin: Springer, 2020: 192−204
    [68]
    Chen Weili, Zheng Zibin, Cui Jiahui, et al. Detecting Ponzi schemes on ethereum: Towards healthier blockchain technology[C]//Proc of the 2018 World Wide Web Conf. New York: ACM, 2018: 1409−1418
    [69]
    Zhang Yanmei, Yu Wenqiang, Li Ziyu, et al. Detecting Ethereum Ponzi schemes based on improved LightGBM algorithm[J]. IEEE Transactions on Computational Social Systems, 2021, 9(2): 624−637
    [70]
    Torres C F, Steichen M, State R. The art of the scam: Demystifying honeypots in Ethereum smart contracts[J]. arXiv preprint, arXiv: 1902.06976, 2019
    [71]
    Nalinipriya G, Balajee M, Priya C, et al. Ransomware recognition in blockchain network using water moth flame optimization-aware DRNN[J]. Concurrency and Computation: Practice and Experience, 2022, 34(19): e7047 doi: 10.1002/cpe.7047
    [72]
    Sun Weisong, Xu Guangyao, Yang Zijiang, et al. Early detection of smart Ponzi scheme contracts based on behavior forest similarity[C]//Proc of the 20th IEEE Int Conf on Software Quality, Reliability and Security (QRS). Piscataway, NJ: IEEE, 2020: 297−309
    [73]
    Chen Weimin, Li Xinran, Sui Yuting, et al. SADPonzi: Detecting and characterizing Ponzi schemes in Ethereum smart contracts[J]. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2021, 5(2): 1−30
    [74]
    Sun Xun, Lin Xingwei, Liao Zhou. An ABI-based classification approach for Ethereum smart contracts[C]//Proc of the 2021 IEEE Int Conf on Dependable, Autonomic and Secure Computing, Int Conf on Pervasive Intelligence and Computing, Int Conf on Cloud and Big Data Computing, Int Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). Piscataway, NJ: IEEE, 2021: 99−104
    [75]
    Fan Shuhui, Fu Shaojing, Xu Haoran, et al. Expose your mask: Smart Ponzi schemes detection on blockchain[EB/OL].[2023-03-24].https://ieeexplore.ieee.org/abstract/document/9207143
    [76]
    Fan Shuhui, Fu Shaojing, Xu Haoran, et al. Al-SPSD: Anti-leakage smart Ponzi schemes detection in blockchain[J]. Information Processing & Management, 2021, 58(4): 102587
    [77]
    Möser M, Böhme R, Breuker D. An inquiry into money laundering tools in the bitcoin ecosystem[C]//Proc of the 2013 Symp on Electronic Crime Research (2013 APWG eCrime). Piscataway, NJ: IEEE, 2013: 1−14
    [78]
    Wu Jiajing, Liu Jieli, Chen Weili, et al. Detecting mixing services via mining bitcoin transaction network with hybrid motifs[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52(4): 2237−2249
    [79]
    Meiklejohn S, Pomarole M, Jordan G, et al. A fistful of bitcoins: Characterizing payments among men with no names[C]//Proc of the 2013 Conf on Internet Measurement. New York: ACM, 2013: 127−140
    [80]
    Ketenci U G, Kurt T, Önal S, et al. A time-frequency based suspicious activity detection for anti-money laundering[J]. IEEE Access, 2021, 9: 59957−59967 doi: 10.1109/ACCESS.2021.3072114
    [81]
    Lorenz J, Silva M I, Aparício D, et al. Machine learning methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity[C]//Proc of the 1st ACM Int Conf on AI in Finance. New York: ACM, 2020: 23: 1−23: 8
    [82]
    Alarab I, Prakoonwit S. Graph-based LSTM for anti-money laundering: Experimenting temporal graph convolutional network with bitcoin data[J]. Neural Processing Letters, 2022, 55(1): 689−707
    [83]
    Chen Weili, Guo Xiongfen, Chen Zhiguang, et al. Phishing scam detection on Ethereum: Towards financial security for blockchain ecosystem[C]//Proc of the 29th Int Joint Conf on Artificial Intelligence (IJCAI). San Francisco: Margan Kaufmann, 2020: 4506−4512
    [84]
    Wu Jiajing, Yuan Qi, Lin Dan, et al. Who are the phishers? Phishing scam detection on Ethereum via network embedding[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 52(2): 1156−1166
    [85]
    Kabla A H H, Anbar M, Manickam S, et al. Eth-PSD: A machine learning-based phishing scam detection approach in Ethereum[J]. IEEE Access, 2022, 10: 118043−118057 doi: 10.1109/ACCESS.2022.3220780
    [86]
    Wen Tingke, Xiao Yuanxing, Wang Anqi, et al. A novel hybrid feature fusion model for detecting phishing scam on Ethereum using deep neural network[J]. Expert Systems with Applications, Amsterdam: Elsevier, 2023, 211: 118463
    [87]
    Ron D, Shamir A. Quantitative analysis of the full bitcoin transaction graph[C]//Proc of the 17th Financial Cryptography and Data Security Int Conf (FC 2013). Berlin: Springer, 2013: 6−24
    [88]
    Zhao Lin, Sen G S, Khan A, et al. Temporal analysis of the entire Ethereum blockchain network[C]//Proc of the 2021 Web Conf. New York: ACM, 2021: 2258−2269
    [89]
    Chen Liang, Peng Jiaying, Liu Yang, et al. Phishing scams detection in Ethereum transaction network[J]. ACM Transactions on Internet Technology, 2020, 21(1): 1−16
    [90]
    Li Sijia, Gou Gaopeng, Liu Chang, et al. TTAGN: Temporal transaction aggregation graph network for ethereum phishing scams detection[C]//Proc of the 2022 ACM Web Conf. New York: ACM, 2022: 661−669
    [91]
    Fu Bingxue, Yu Xing, Feng Tao. CT-GCN: A phishing identification model for blockchain cryptocurrency transactions[J]. International Journal of Information Security, 2022, 21(6): 1223−1232 doi: 10.1007/s10207-022-00606-6
    [92]
    Duan Xincheng, Yan Biwei, Dong Anming, et al. Phishing frauds detection based on graph neural network on Ethereum[C]//Proc of the 17th Int Conf on Wireless Algorithms, Systems, and Applications (WASA 2022). Berlin: Springer, 2022: 351−363
    [93]
    Eigelshoven F, Ullrich A, Parry D A. Cryptocurrency market manipulation: A systematic literature review[EB/OL].[2023-03-28].https://aisel.aisnet.org/icis2021/fintech/fintech/1/
    [94]
    Chen Weili, Wu Jun, Zheng Zibin, et al. Market manipulation of bitcoin: Evidence from mining the Mt. Gox transaction network[C]//Proc of the 2019 IEEE INFOCOM Conf on Computer Communications. Piscataway, NJ: IEEE, 2019: 964−972
    [95]
    Pereira D M, Couto R S. Using degree centrality to identify market manipulation on bitcoin[C]//Proc of the 2021 Data Privacy Management, Cryptocurrencies and Blockchain Technology: ESORICS Int Workshops (DPM 2021 and CBT 2021). Berlin: Springer, 2022: 208−223
    [96]
    Huang D Y, Aliapoulios M M, Li V G, et al. Tracking ransomware end-to-end[C]//Proc of the 2018 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2018: 618−631
    [97]
    Akcora C G, Li Yitao, Gel Y R, et al. Bitcoinheist: Topological data analysis for ransomware detection on the bitcoin blockchain[J]. arXiv preprint, arXiv: 1906.07852, 2019
    [98]
    Raheem A, Raheem R, Chen T M, et al. Estimation of ransomware payments in bitcoin ecosystem[C]//Proc of the 2021 IEEE Int Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). Piscataway, NJ: IEEE, 2021: 1667−1674
    [99]
    Han Weili, Chen Dingjie, Pang Jun, et al. Temporal networks based industry identification for bitcoin users[C]//Proc of the 16th Int Conf on Wireless Algorithms, Systems, and Applications (WASA 2021). Berlin: Springer, 2021: 108−120
    [100]
    Wang Kai, Pang Jun, Chen Dingjie, et al. A large-scale empirical analysis of ransomware activities in bitcoin[J]. ACM Transactions on the Web, 2021, 16(2): 1−29
  • Related Articles

  • Cited by

    Periodical cited type(12)

    1. 刘向举,李金贺,方贤进,王宇. 移动边缘计算中计算卸载与资源分配联合优化策略. 计算机工程与科学. 2024(03): 416-426 .
    2. 闾国年,袁林旺,陈旻,张雪英,周良辰,俞肇元,罗文,乐松山,吴明光. 地理信息学科发展的思考. 地球信息科学学报. 2024(04): 767-778 .
    3. 谢满德,黄竹芳,孙浩. 云边端协同下多用户细粒度任务卸载调度策略. 电信科学. 2024(04): 107-121 .
    4. 纪允,孙建明,夏涛,吴子良,叶旭琪. 基于多层次数据协同应用的海关数据安全机制研究. 中国口岸科学技术. 2024(05): 27-34 .
    5. 方浩添,田乐,郭茂祖. 基于多群体混合智能优化算法的卸载决策寻优方法. 智能系统学报. 2024(06): 1573-1583 .
    6. 牟琦,韩嘉嘉,张寒,李占利. 基于云边协同的煤矿井下尺度自适应目标跟踪方法. 工矿自动化. 2023(04): 50-61 .
    7. 陆嘉旻,蒋丞,柴俊,贺亚龙,漆昭铃. 基于云边端协同的UUV数字模型设计与实现. 电声技术. 2023(03): 31-35 .
    8. 何牧,孙越,庞琦方. 基于边缘计算的智能视频分析算法研究. 电力大数据. 2023(04): 65-73 .
    9. 王宏杰,徐胜超,陈刚,杨波,毛明扬. 基于萤火虫算法的移动边缘计算网络带宽优化策略. 计算机测量与控制. 2023(11): 280-285 .
    10. 张俊娜,鲍想,陈家伟,赵晓焱,袁培燕,王尚广. 一种联合时延和能耗的依赖性任务卸载方法. 计算机研究与发展. 2023(12): 2770-2782 . 本站查看
    11. 邱丹青,许宇辉. 5G移动边缘计算环境下的任务卸载方法研究. 企业科技与发展. 2023(12): 75-78 .
    12. 林铭敏. 基于目标追踪的视频边缘计算云边协同任务调度及信息安全管理. 信息与电脑(理论版). 2023(20): 63-65 .

    Other cited types(21)

Catalog

    Article views (295) PDF downloads (126) Cited by(33)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return