Citation: | Ma Yuhang, Zhang Liang, Wu Xingyu, Li Ming. Multi-Party Cross-Chain Transaction Scheme Based on Distributed Key Generation and Attribute-Based Encryption[J]. Journal of Computer Research and Development, 2023, 60(11): 2534-2544. DOI: 10.7544/issn1000-1239.202330305 |
Due to the differences in the underlying protocols and technical architectures of different blockchains, it is difficult to effectively exchange digital assets between chains. Currently, digital currency exchanges are the main platforms for digital asset exchanges. However, the existing centralized exchanges store users’ funds, which are vulnerable to hacker attacks, internal theft, or exchange escapes and other security issues. Existing decentralized exchanges are limited by the block generation time and confirmation speed of the blockchains participating in the cross-chain, which affects transaction efficiency. And there are fewer order types and functions in decentralized exchanges. In order to solve the above problems, we implement a decentralized multi-party transaction scheme through distributed key generation and attribute-based encryption. The user’s assets are pledged to the distributed network through distributed key generation to realize a decentralized asset management model. The distributed network generates an equivalent amount of digital asset tokens for users on the transaction blockchain, enabling users to use tokens for transactions on the transaction blockchain, and then to go to the distributed network to extract the corresponding digital assets according to the token ownership certificate. Users realize transaction control through attribute-based encryption, and use asset type, amount, exchange rate and time as attributes to set up diversified access control strategies. Transaction objects that meet the user’s policy can be traded with the users. The smart contract service provided by the transaction blockchain can realize diversified transaction options for users and provide users with fair exchange services. We verify the feasibility of the scheme through experiments. The efficiency of cross-chain is limited by the distributed key generation algorithm and the blockchain itself participating in the cross-chain when locking and extracting assets. In the multi-party transaction system, the transaction efficiency is only related to the transaction blockchain.
[1] |
Li Xiaohong, Wang Daobo, Li Maolin. Convenience analysis of sustainable E-agriculture based on blockchain technology[J]. Journal of Cleaner Production, 2020, 271: 122503 doi: 10.1016/j.jclepro.2020.122503
|
[2] |
Farouk A, Alahmadi A, Ghose S, et al. Blockchain platform for industrial healthcare: Vision and future opportunities[J]. Computer Communications, 2020, 154: 223−235 doi: 10.1016/j.comcom.2020.02.058
|
[3] |
Ahluwalia S, Mahto R V, Guerrero M. Blockchain technology and startup financing: A transaction cost economics perspective[J]. Technological Forecasting and Social Change, 2020, 151: 119854 doi: 10.1016/j.techfore.2019.119854
|
[4] |
邵奇峰,金澈清,张召,等. 区块链技术:架构及进展[J]. 计算机学报,2018,41(5):969−988 doi: 10.11897/SP.J.1016.2018.00969
Shao Qifeng, Jin Cheqing, Zhang Zhao, et al. Blockchain: Architecture and research progress[J]. Chinese Journal of Computers, 2018, 41(5): 969−988 (in Chinese) doi: 10.11897/SP.J.1016.2018.00969
|
[5] |
于戈,聂铁铮,李晓华,等. 区块链系统中的分布式数据管理技术:挑战与展望[J]. 计算机学报,2021,44(1):28−54
Yu Ge, Nie Tiezheng, Li Xiaohua, et al. The challenge and prospect of distributed data management techniques in blockchain systems[J]. Chinese Journal of Computers, 2021, 44(1): 28−54 (in Chinese)
|
[6] |
李芳,李卓然,赵赫. 区块链跨链技术进展研究[J]. 软件学报,2019,30(6):1649−1660
Li Fang, Li Zhuoran, Zhao He. Research on the progress in cross-chain technology of blockchains[J]. Journal of Software, 2019, 30(6): 1649−1660 (in Chinese)
|
[7] |
郭朝,郭帅印,张胜利,等. 区块链跨链技术分析[J]. 物联网学报,2020,4(2):35−48 doi: 10.11959/j.issn.2096-3750.2020.00162
Guo Zhao, Guo Shuaiyin, Zhang Shengli. Analysis of cross-chain technology of blockchain[J]. Journal of the Internet of Things, 2020, 4(2): 35−48 (in Chinese) doi: 10.11959/j.issn.2096-3750.2020.00162
|
[8] |
康博涵,章宁,朱建明. 基于区块链的智能服务交易跨链服务框架与通信机制[J]. 网络与信息安全学报,2021,7(3):105−114 doi: 10.11959/j.issn.2096-109x.2021062
Kang Bohan, Zhang Ning, Zhu Jianming. Research on inter-blockchain service framework and communication mechanism based on smart service transaction[J]. Chinese Journal of Network and Information Security, 2021, 7(3): 105−114 (in Chinese) doi: 10.11959/j.issn.2096-109x.2021062
|
[9] |
Neisse R, Hernández-Ramos J L, Matheu-Garcia S N, et al. An interledger blockchain platform for cross-border management of cybersecurity information[J]. IEEE Internet Computing, 2020, 24(3): 19−29 doi: 10.1109/MIC.2020.3002423
|
[10] |
Benji M, Sindhu M. A study on the Corda and Ripple blockchain platforms[C]// Proc of Advances in Big Data and Cloud Computing (ICBDCC’18). Berlin: Springer, 2019: 179−187
|
[11] |
刘峰,张嘉淏,周俊杰,等. 基于改进哈希时间锁的区块链跨链资产交互协议[J]. 计算机科学,2022,49(1):336−344 doi: 10.11896/jsjkx.210600170
Liu Feng, Zhang Jiahao, Zhou Junjie, et al. Novel Hash-time-lock-contract based cross-chain token swap mechanism of blockchain[J]. Computer Science, 2022, 49(1): 336−344 (in Chinese) doi: 10.11896/jsjkx.210600170
|
[12] |
Kwon J, Buchman E. A network of distributed ledgers[R/OL]. Cosmos, 2018[2023-03-29]. https://v1.cosmos.network/resources/whitepaper
|
[13] |
Wood G. Polkadot: Vision for a heterogeneous multi-chain framework[R/OL]. Polkadot white paper, 2016: 1.[2023-05-01]. https://assets.polkadot.network/Polkadot-whitepaper.pdf
|
[14] |
何帅,黄襄念,陈晓亮. 区块链跨链技术发展及应用研究综述[J]. 西华大学学报 (自然科学版),2021,40(3):1−14
He Shuai, Huang Xiangnian, Chen Xiaoliang. The research summary of the development and application of blockchain cross-chain technology[J]. Journal of Xihua University(Natural Science Edition), 2021, 40(3): 1−14 (in Chinese)
|
[15] |
Patashkova Y, Niyazbekova S, Kerimkhulle S, et al. Dynamics of bitcoin trading on the Binance cryptocurrency exchange[J]. Економiчний часопис-XXI, 2021, 187(1-2): 177−188
|
[16] |
Jalan A, Matkovskyy R. Systemic risks in the cryptocurrency market: Evidence from the FTX collapse[J]. Finance Research Letters, 2023, 53: 103670 doi: 10.1016/j.frl.2023.103670
|
[17] |
Neuder M, Rao R, Moroz D J, et al. Strategic liquidity provision in uniswap v3[J]. arXiv preprint, arXiv: 2106. 12033, 2021
|
[18] |
张亮,刘百祥,张如意,等. 区块链技术综述[J]. 计算机工程,2019,45(5):1−12
Zhang Liang, Liu Baixiang, Zhang Ruyi, et al. Overview of blockchain technology[J]. Computer Engineering, 2019, 45(5): 1−12 (in Chinese)
|
[19] |
Dannen C. Introducing Ethereum and Solidity[M]. Berkeley, CA: Apress, 2017
|
[20] |
Vujičić D, Jagodić D, Ranđić S. Blockchain technology, bitcoin, and Ethereum: A brief overview[C]//Proc of 2018 17th Int Symp Infoteh-Jahorina (Infoteh). Piscataway, NJ: IEEE, 2018: 1−6
|
[21] |
Victor F, Lüders B K. Measuring Ethereum-based ERC20 token networks[C]// Proc of the 23rd Int Conf on Financial Cryptography and Data Security. Berlin: Springer, 2019: 113−129
|
[22] |
Pedersen T P. Non-interactive and information-theoretic secure verifiable secret sharing[C]// Proc of Annual Int CryptologyConf. Berlin: Springer, 1991: 129−140
|
[23] |
Herzberg A, Jarecki S, Krawczyk H, et al. Proactive secret sharing or: How to cope with perpetual leakage[C]//Proc of the 15th Annual Int Cryptology Conf on Advances in Cryptology(CRYPT0’95). Berlin: Springer, 1995: 339−352
|
[24] |
Blakley G R. Safeguarding cryptographic keys[C]// Proc of the Int Workshop on Managing Requirements Knowledge. Los Alamitos, CA: IEEE Computer Society, 1979: 313−313
|
[25] |
Chor B, Goldwasser S, Micali S, et al. Verifiable secret sharing and achieving simultaneity in the presence of faults[C]//Proc of the 26th Annual Symp on Foundations of Computer Science (SFCS 1985). Piscataway, NJ: IEEE, 1985: 383−395
|
[26] |
Feldman P. A practical scheme for non-interactive verifiable secret sharing[C]// Proc of the 28th Annual Symp on Foundations of Computer Science (SFCS 1987). Piscataway, NJ: IEEE, 1987: 427−438
|
[27] |
Shamir A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612−613 doi: 10.1145/359168.359176
|
[28] |
Ren Yongjun, Yang Zhenqi, Wang Jin, et al. Reliable access control for multi-authority in cloud storage[C]// Proc of 2015 Int Carnahan Conf on Security Technology (ICCST). Piscataway, NJ: IEEE, 2015: 113−116
|
[29] |
Kate A, Huang Yizhou, Goldberg I. Distributed key generation in the wild[J/OL]. Cryptology ePrint Archive, 2012/377.[2023-05-01]. https://eprint.iacr.org/2012/377
|
[30] |
Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption[C]// Proc of 2007 IEEE Symp on Security and Privacy (SP’07). Piscataway, NJ: IEEE, 2007: 321−334
|
[1] | Wu Jingya, Lu Wenyan, Yan Guihai, Li Xiaowei. HyperTree: High Concurrent B+tree Index Accelerator[J]. Journal of Computer Research and Development, 2023, 60(7): 1661-1677. DOI: 10.7544/issn1000-1239.202111055 |
[2] | Yang Yongpeng, Jiang Dejun. A Method for Solving the wandering B+ tree Problem[J]. Journal of Computer Research and Development, 2023, 60(3): 539-554. DOI: 10.7544/issn1000-1239.202220555 |
[3] | Yan Wei, Zhang Xingjun, Ji Zeyu, Dong Xiaoshe, Ji Chenzhao. One-Direction Shift B+-Tree Based on Persistent Memory[J]. Journal of Computer Research and Development, 2021, 58(2): 371-383. DOI: 10.7544/issn1000-1239.2021.20200403 |
[4] | Te Rigen, Li Wei, and Li Xiongfei. Storage Model and Implementation of the Dynamic Ordered Tree[J]. Journal of Computer Research and Development, 2013, 50(5): 969-985. |
[5] | Shen Yan, Song Shunlin, Zhu Yuquan. Mining Algorithm of Association Rules Based on Disk Table Resident FP-TREE[J]. Journal of Computer Research and Development, 2012, 49(6): 1313-1322. |
[6] | Wang Hongqiang, Li Jianzhong, and Wang Hongzhi. Processing XPath over F&B-Index[J]. Journal of Computer Research and Development, 2010, 47(5): 866-877. |
[7] | Zhou Da, Liang Zhichao, Meng Xiaofeng. HF-Tree: An Update-Efficient Index for Flash Memory[J]. Journal of Computer Research and Development, 2010, 47(5): 832-840. |
[8] | Sun Xiaojuan, Sun Ninghui, Chen Mingyu. Optimization of B-NIDS for Multicore[J]. Journal of Computer Research and Development, 2007, 44(10): 1733-1740. |
[9] | Ju Dapeng, Li Ming, Hu Jinfeng, Wang Dongsheng, Zheng Weimin, and Ma Yongquan. An Algorithm of B\++ Tree Management in P2P Environment[J]. Journal of Computer Research and Development, 2005, 42(8): 1438-1444. |
[10] | Dong Daoguo, Liang Liuhong, and Xue Xiangyang. VAR-Tree—A New High-Dimensional Data Index Structure[J]. Journal of Computer Research and Development, 2005, 42(1): 10-17. |
1. |
LUO Haoran,HU Shuisong,WANG Wenyong,TANG Yuke,ZHOU Junwei. Research on Multi-Core Processor Analysis for WCET Estimation. ZTE Communications. 2024(01): 87-94 .
![]() |