Citation: | Guo Doudou, Xu Weihua. R-FCCL: An Approach of Fuzzy-Based Concept-Cognitive Learning with Robustness for High-Dimensional Data[J]. Journal of Computer Research and Development, 2025, 62(2): 383-396. DOI: 10.7544/issn1000-1239.202330428 |
With the rapid development of global informationization, data mining and knowledge discovery of high-dimensional data have been a hotspot in the field of artificial intelligence and data science. However, the sparse sample and redundant feature issues of high-dimensional data make it challenging to ensure the generalization and interpretability of traditional statistical models and machine learning methods. Hence, we present fuzzy-based concept-cognitive learning with robustness for the imbalance problem between high-dimensional data and weak knowledge evolution ability. The main idea is to explore the knowledge structure and cognitive learning mechanism of high-dimensional data from the concept perspective. We propose a high-dimensional data classification method based on the concept-cognitive learning mechanism in the fuzzy formal context. Furthermore, the cognitive learning process of fuzzy concepts is described from two different perspectives by the positive and negative cognitive learning operators of fuzzy three-way concepts. Finally, the fusion of fuzzy three-way concepts completes the task of concept identification and data classification. Extensive experiments performed on 12 real data sets compared with 12 state-of-the-art classification methods also verify the robustness and effectiveness of the proposed method. The considered framework can provide a convenient novel tool for high-dimensional data knowledge discovery research and fuzzy-based concept-cognitive learning.
[1] |
于洪,何德牛,王国胤,等. 大数据智能决策[J]. 自动化学报,2020,46(5):878−896
Yu Hong, He Deniu, Wang Guoyin, et al. Big data for intelligent decision making[J]. Acta Automatica Sinica, 2020, 46(5): 878−896 (in Chinese)
|
[2] |
于晓,刘慧,吴彦,等. 基于本质自表示的多视角子空间聚类[J]. 中国科学:信息科学,2021,51(10):1625−1639 doi: 10.1360/SSI-2020-0274
Yu Xiao, Liu Hui, Wu Yan, et al. Intrinsic self-representation for multi-view subspace clustering[J]. SCIENTIA SINICA Informations, 2021, 51(10): 1625−1639 (in Chinese) doi: 10.1360/SSI-2020-0274
|
[3] |
Cózar J, Fernández A, Herrera F, et al. A metahierarchical rule decision system to design robust fuzzy classifiers based on data complexity[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(4): 701−715 doi: 10.1109/TFUZZ.2018.2866967
|
[4] |
Gómez D, Rojas A. An empirical overview of the no free lunch theorem and its effect on real-world machine learning classification[J]. Neural Computing, 2016, 28(1): 216−228 doi: 10.1162/NECO_a_00793
|
[5] |
Lake B M, Salakhutdinov R, Tenenbaum J B, et al. Human-level concept learning through probabilistic program induction[J]. Science, 2015, 350(6266): 1332−1338 doi: 10.1126/science.aab3050
|
[6] |
于剑. 机器学习:从公理到算法[M]. 北京:清华大学出版社,2017
Yu Jian. Machine Learning from Axioms to Algorithms[M]. Beijing: Tsinghua University Press, 2017 (in Chinese)
|
[7] |
李金海,米允龙,刘文奇. 概念的渐进式认知理论与方法[J]. 计算机学报,2019,42(10):2233−2250
Li Jinhai, Mi Yunlong, Liu Wenqi. Incremental cognitive of concept: Theories and methods[J]. Chinese Journal of Computers, 2019, 42(10): 2233−2250 (in Chinese)
|
[8] |
李金海,李玉斐,米允龙,等. 多粒度形式概念分析的介粒度标记方法[J]. 计算机研究与发展,2020,57(2):447−458 doi: 10.7544/issn1000-1239.2020.20190279
Li Jinhai, Li Yufei, Mi Yunlong, et al. Meso-granularity labeled method for multi-granularity formal concept analysis[J]. Journal of Computer Research and Development, 2020, 57(2): 447−458 (in Chinese) doi: 10.7544/issn1000-1239.2020.20190279
|
[9] |
张文修,徐伟华. 基于粒计算的认知模型[J]. 工程数学学报,2007,24(6):957−971 doi: 10.3969/j.issn.1005-3085.2007.06.002
Zhang Wenxiu, Xu Weihua. Cognitive model based on granular computing[J]. Chinese Journal of Engineering Mathematics, 2007, 24(6): 957−971 (in Chinese) doi: 10.3969/j.issn.1005-3085.2007.06.002
|
[10] |
Li Jinhai, Mei Changlin, Xu Weihua, et al. Concept learning via granular computing: A cognitive viewpoint[J]. Information Sciences, 2015, 298: 447−467 doi: 10.1016/j.ins.2014.12.010
|
[11] |
王霞,江山,李俊余,等. 三元概念的一种构造方法[J]. 计算机研究与发展,2019,56(4):844−853
Wang Xia, Jiang Shan, Li Junyu, et al. A construction method of triadic concepts[J]. Journal of Computer Research and Development, 2019, 56(4): 844−853 (in Chinese)
|
[12] |
Yao Yiyu. Interval sets and three-way concept analysis in incomplete contexts[J]. International Journal of Machine Learning and Cybernetics, 2017, 8: 3−20 doi: 10.1007/s13042-016-0568-1
|
[13] |
Xu Weihua, Guo Doudou, Mi Jusheng, et al. Two-way concept-cognitive learning via concept movement viewpoint[J]. IEEE Transactions on Neural Networks and Learning Systems. 2023, 34(10): 6798−6812
|
[14] |
Mi Yunlong, Shi Yong, Li Jinhai, et al. Fuzzy-based concept learning method: Exploiting data with fuzzy conceptual clustering[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 809−821
|
[15] |
Shi Yong, Mi Yunlong, Li Jinhai, et al. Concurrent concept-cognitive learning model for classification[J]. Information Sciences, 2019, 496: 65−81 doi: 10.1016/j.ins.2019.05.009
|
[16] |
Zhang Xiaoyan, Guo Doudou, Xu Weihua. Two-way concept-cognitive learning with multi-source fuzzy context[J]. Cognitive Computation, 2023, 15(5): 1526−1548
|
[17] |
Yan Enliang, Yu Cunguo, Lu Liming, et al. Incremental concept cognitive learning based on three-way partial order structure[J]. Knowledge-Based Systems, 2021, 220: 68−98
|
[18] |
Hao Fei, Pang Guangyao, Pei Zheng, et al. Virtual machines scheduling in mobile edge computing: A formal concept analysis approach[J]. IEEE Transactions on Sustainable Computing, 2019, 5(3): 319−328
|
[19] |
魏玲,曹丽,祁建军,等. 形式概念分析中的概念约简与概念特征[J]. 中国科学:信息科学,2020,50(12):1817−1833 doi: 10.1360/N112018-00272
Wei Ling, Cao Li, Qi Jianjun, et al. Concept reduction and concept characteristics in formal concept analysis[J]. SCIENTIA SINICA Informations, 2020, 50(12): 1817−1833 (in Chinese) doi: 10.1360/N112018-00272
|
[20] |
徐伟华,杨蕾,张晓燕. 模糊三支形式概念分析与概念认知学习[J]. 西北大学学报:自然科学版,2020,50(4):516−528
Xu Weihua, Yang Lei, Zhang Xiaoyan. Fuzzy three-way formal concept analysis and concept-cognitive learning[J]. Journal of Northwest University: Natural Science Edition, 2020, 50(4): 516−528 (in Chinese)
|
[21] |
Qian Ting, Wei Ling, Qi Jianjun. Constructing three-way concept lattices based on apposition and subposition of formal contexts[J]. Knowledge-Based Systems, 2017, 116(15): 39−48
|
[22] |
Guo Doudou, Xu Weihua. Fuzzy-based concept-cognitive learning: An investigation of novel approach to tumor diagnosis analysis[J]. Information Sciences, 2023, 639: 118998 doi: 10.1016/j.ins.2023.118998
|
[23] |
马娜,范敏,李金海. 复杂网络下的概念认知学习[J]. 南京大学学报:自然科学,2019,55(4):609−623
Ma Na, Fan Min, Li Jinhai. Concept-cognitive learning under complex network[J]. Journal of Nanjing University: Natural Science, 2019, 55(4): 609−623 (in Chinese)
|
[24] |
Xu Weihua, Guo Doudou, Qian Yuhua, et al. Two-way concept-cognitive learning method: A fuzzy-based progressive learning[J]. IEEE Transactions on Fuzzy Systems, 2023, 31(6): 1885−1899 doi: 10.1109/TFUZZ.2022.3216110
|
[25] |
Fan Bingjiao, Tsang E C C, Xu Weihua, et al. Attribute-oriented cognitive concept learning strategy: A multi-level method[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(9): 2421−2437 doi: 10.1007/s13042-018-0879-5
|
[26] |
Li Jinhai, Huang Chenchen, Qi Jianjun, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378: 244−263 doi: 10.1016/j.ins.2016.04.051
|
[27] |
Guo Doudou, Xu Weihua, Qian Yuhua, et al. Fuzzy-granular concept-cognitive learning via three-way decision: Performance evaluation on dynamic knowledge discovery[J/OL]. IEEE Transactions on Fuzzy Systems, 2023[2023-10-19]. https://ieeexplore.ieee.org/document/10288039
|
[28] |
Guo Doudou, Xu Weihua, Qian Yuhua, et al. M-FCCL: Memory-based concept-cognitive learning for dynamic fuzzy data classification and knowledge fusion[J]. Information Fusion, 2023, 100: 101962 doi: 10.1016/j.inffus.2023.101962
|
[29] |
Zhang Tao, Rong Mei, Shan Haoran, et al. Causal asymmetry analysis in the view of concept-cognitive learning by incremental concept tree[J]. Cognitive Computation, 2021, 13(5): 1274−1286 doi: 10.1007/s12559-021-09930-w
|
[30] |
Xu Weihua, Li Wentao. Granular computing approach to two-way learning based on formal concept analysis in fuzzy dataset[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 66−379
|
[31] |
Ganter B. Formal Concept Analysis: Mathematical Foundations[M]. Berlin: Springer, 1999
|
[32] |
徐伟华,李金海,魏玲,等. 形式概念分析理论与应用[M]. 北京:科学出版社,2016
Xu Weihua, Li Jinhai, Wei Ling, et al. Formal Concept Analysis: Theory and Application[M]. Beijing: Science Press, 2016 (in Chinese)
|
[33] |
祁建军,魏玲,姚一豫. 三支概念分析与决策[M]. 北京:科学出版社,2019
Qi Jianjun, Wei Ling, Yao Yiyu. Three-Way Concept Analysis and Decision[M]. Beijing: Science Press, 2019 (in Chinese)
|
[34] |
Yuan Kehua, Xu Weihua, Li Wentao, et al. An incremental learning mechanism for object classification based on progressive fuzzy three-way concept[J]. Information Sciences, 2022, 584: 127−147 doi: 10.1016/j.ins.2021.10.058
|
[35] |
Li Jundong, Cheng Kewei, Wang Suhang, et al. Feature selection: A data perspective[J]. ACM Computing Surveys, 2018, 50(6): 94−139
|
[36] |
Elhadad A, Ghareeb A, Abbas S. A blind and high-capacity data hiding of DICOM medical images based on fuzzification concepts[J]. Alexandria Engineering Journal, 2021, 66(2): 2471−2482
|
[37] |
Kuncheva L I. An intuitionistic fuzzy k-nearest neighbors rule[J]. Notes on Intuitionistic Fuzzy Sets, 1995, 1: 56−60
|
[38] |
Yang M S, Cheng C H. On the edited fuzzy k-nearest neighbor rule[J]. IEEE Transactions on Systems, Man, and Cybernetics: Cybernetics, 1998, 28(8): 461−466
|
[39] |
Arif M, Akram M U, Afsar F A, et al. Pruned fuzzy k-nearest neighbor classifier for beat classification[J]. Journal of Biomedical Science and Engineering, 2010, 3(4): 380−389 doi: 10.4236/jbise.2010.34053
|
[40] |
Jensen R, Cornelis C. Fuzzy-rough nearest neighbour classification[C] // Proc of the 7th Rough Sets and Current Trends in Computing Conf. Berlin: Springer, 2011: 56−72
|
[41] |
Zhai Junhai, Li Na, Zhai Mengyao. The condensed fuzzy k-nearest neighbor rule based on sample fuzzy entropy[C] // Proc of the 24th Int Conf on Machine Learning and Cybernetics. Berlin: Springer, 2011: 282−286
|
[42] |
周志华. 机器学习[M]. 北京:清华大学出版社,2016
Zhou Zhihua. Machine Learning[M]. Beijing: Tsinghua University Press, 2016 (in Chinese)
|
[43] |
Adnan M N, Islam M Z. Forest PA: Constructing a decision forest by penalizing attributes used in previous trees[J]. Expert Systems with Applications, 2017, 89(15): 389−403
|
[44] |
De G M, Maurizio G. An experimental evaluation of weightless neural networks for multi-class classification[J]. Applied Soft Computing, 2018, 72: 338−354 doi: 10.1016/j.asoc.2018.07.052
|
[45] |
Yates D, Islam M Z, Gao J. SPAARC: A Fast Decision Tree Algorithm[M]. Berlin: Springer, 2019
|
[46] |
Ii A, Jmp B, Jm B, et al. PCTBagging: From inner ensembles to ensembles. A trade-off between discriminating capacity and interpretability [J]. Information Sciences, 2022, 583: 219−238 doi: 10.1016/j.ins.2021.11.010
|
[47] |
Vlachos M, Domeniconi C, Gunopulos D, et al. Non-linear dimensionality reduction techniques for classification and visualization[C]//Proc of the 8th ACM Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2002: 645−651
|
[1] | Li Junwei, Liu Quan, Huang Zhigang, Xu Yapeng. A Diversity-Enriched Option-Critic Algorithm with Interest Functions[J]. Journal of Computer Research and Development, 2024, 61(12): 3108-3120. DOI: 10.7544/issn1000-1239.202220970 |
[2] | Zhao Rongmei, Sun Siyu, Yan Fanli, Peng Jian, Ju Shenggen. Multi-Interest Aware Sequential Recommender System Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2024, 61(7): 1730-1740. DOI: 10.7544/issn1000-1239.202330622 |
[3] | Zhu Haiping, Wang Ziyu, Zhao Chengcheng, Chen Yan, Liu Jun, Tian Feng. Learning Resource Recommendation Method Based on Spatio-Temporal Multi-Granularity Interest Modeling[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440249 |
[4] | Liu Haijiao, Ma Huifang, Zhao Qiqi, Li Zhixin. Target Community Detection with User Interest Preferences and Influence[J]. Journal of Computer Research and Development, 2021, 58(1): 70-82. DOI: 10.7544/issn1000-1239.2021.20190775 |
[5] | Guo Kaihong, Han Hailong. Personalized Recommendation Model Based on Quantifier Induced by Preference[J]. Journal of Computer Research and Development, 2020, 57(1): 124-135. DOI: 10.7544/issn1000-1239.2020.20190166 |
[6] | Gao Ling, Gao Quanli, Wang Hai, Wang Wei, Yang Kang. A Preference Prediction Method Based on the Optimization of Basic Similarity Space Distribution[J]. Journal of Computer Research and Development, 2018, 55(5): 977-985. DOI: 10.7544/issn1000-1239.2018.20160924 |
[7] | Guo Chi, Wang Lina, Guan Yiping, Zhang Xiaoying. A Network Immunization Strategy Based on Dynamic Preference Scan[J]. Journal of Computer Research and Development, 2012, 49(4): 717-724. |
[8] | Zou Bowei, Zhang Yu, Fan Jili, Zheng Wei, and Liu Ting. Research on Personalized Information Retrieval Based on User’s New Interest Detection[J]. Journal of Computer Research and Development, 2009, 46(9): 1594-1600. |
[9] | Wang Zhenzhen, Xing Hancheng, and Chen Hanwu. On a Preference System of Agent and Its Construction[J]. Journal of Computer Research and Development, 2009, 46(2): 253-260. |
[10] | Wu Jing, Zhang Pin, Luo Xin, Sheng Hao, and Xiong Zhang. Mining Interests and Navigation Patterns in Personalization on Portal[J]. Journal of Computer Research and Development, 2007, 44(8): 1284-1292. |