• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Shuai, Qiao Ying, Luo Xiongfei, Zhao Yijing, Wang Hong’an. Key Techniques of Time Series Databases: A Survey[J]. Journal of Computer Research and Development, 2024, 61(3): 614-638. DOI: 10.7544/issn1000-1239.202330536
Citation: Liu Shuai, Qiao Ying, Luo Xiongfei, Zhao Yijing, Wang Hong’an. Key Techniques of Time Series Databases: A Survey[J]. Journal of Computer Research and Development, 2024, 61(3): 614-638. DOI: 10.7544/issn1000-1239.202330536

Key Techniques of Time Series Databases: A Survey

Funds: This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDC02030300).
More Information
  • Author Bio:

    Liu Shuai: born in 1992. PhD candidate. His main research interest includes database systems and technologies

    Qiao Ying: born in 1973. PhD, professor. Her main research interests include real-time intelligence and real-time scheduling

    Luo Xiongfei: born in 1977. PhD, senior engineer. His main research interest includes real-time data management and analysis technology

    Zhao Yijing: born in 1994. PhD candidate. Her main research interests include intelligent database technology and data mining

    Wang Hong’an: born in 1963. PhD, professor, PhD supervisor. Senior member of CCF. His main research interests include natural human-computer interaction and real-time intelligence

  • Received Date: June 20, 2023
  • Revised Date: November 30, 2023
  • Available Online: December 19, 2023
  • With the continuous development of the industrial Internet of things (IIoT), an increasing number of devices and sensors are being connected to networks, resulting in a massive influx of time series data. The explosive growth of time series data presents new challenges for database management systems: continuous high-throughput data ingestion, low-latency multidimensional data queries, high-performance time series indexing, and cost-effective data storage. In recent years, time series database technology has become a hot research topic in the field of databases. Some scholars have conducted in-depth research on time series database technology, while specialized time series databases have emerged for managing time series data and have been applied in various fields. These databases have become essential components in IIoT. The existing reviews of time series databases primarily focus on the comparison of functionalities and performance, as well as providing selection recommendations for specific domains. There is a lack of research on key technologies such as data persistence, querying, computation, and indexing in time series stores. Additionally, these reviews appeared earlier and lacked research on modern time series database technologies. We conduct a comprehensive investigation and research analysis of both academic research on time series data storage and industrial time series databases. We take a deep dive into four key technologies in time series databases: 1) time series index optimization techniques; 2) in-memory data organization techniques; 3) high-throughput data ingestion and low-latency data query techniques; 4) cost-effective storage techniques for massive historical data. We also analyze and summarize existing TSDB benchmarks. Finally, we present future development directions for the key technologies in time series databases.

  • [1]
    黄向东,郑亮帆,邱明明,等. 支持时序数据聚合函数的索引[J]. 清华大学学报:自然科学版,2016,56(3):229−236,245

    Huang Xiangdong, Zheng Liangfan, Qiu Mingming, et al. Time-series data aggregation index[J]. Journal of Tsinghua University: Science and Technology, 2016, 56(3): 229−236, 245 (in Chinese)
    [2]
    Oetiker T. RRD tool: Round-robin database tool [EB/OL]. [2023-04-10]. http://oss.oetiker.ch/rrdtool/
    [3]
    Gelbmann M. Time series DBMS are the database category with the fastest increase in popularity[EB/OL]. [2023-04-10].https://db-engines.com/de/blog_post/62
    [4]
    solid IT. DB-Engines ranking of time series DBMS[EB/OL]. [2023-04-10].https://db-engines.com/en/ranking/time+series+dbms
    [5]
    Jensen S K, Pedersen T B, Thomsen C. Time series management systems: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(11): 2581−2600 doi: 10.1109/TKDE.2017.2740932
    [6]
    Huang Jian, Badam A, Chandra R, et al. WearDrive: Fast and energy-efficient storage for wearables[C] //Proc of the 2015 USENIX Annual Technical Conf. Berkeley, CA: USENIX Association, 2015: 613-625
    [7]
    Pelkonen T, Franklin S, Teller J, et al. Gorilla: A fast, scalable, in-memory time series database[J]. Proceedings of the VLDB Endowment, 2015, 8(12): 1816−1827 doi: 10.14778/2824032.2824078
    [8]
    Khalefa M E, Fischer U, Pedersen T B, et al. Model-based integration of past & future in TimeTravel[J]. Proceedings of the VLDB Endowment, 2012, 5(12): 1974−1977 doi: 10.14778/2367502.2367551
    [9]
    Bader A, Kopp O, Falkenthal M. Survey and comparison of open source time series databases[C] //Proc of the 17th Conf on Database Systems for Business, Technology, and Web. Bonn, Germany: German Informatics Society, 2017: 249−268
    [10]
    InfluxData. InfluxDB time series database[EB/OL]. [2023-04-10].https://www.influxdata.com
    [11]
    The OpenTSDB Team. OpenTSDB-A distributed, scalable monitoring system [EB/OL]. [2023-04-10]. http://opentsdb.net/
    [12]
    Timescale. TimescaleDB time series database[EB/OL]. [2023-04-10].https://www.timescale.com/
    [13]
    The Apache Software Foundation (ASF). Apache Cassandra is an open source NoSQL distributed database [EB/OL]. [2023-04-10].https://cassandra.apache.org/
    [14]
    Sanaboyina T P. Performance evaluation of time series databases based on energy consumption [D]. Karlskrona, Sweden: Blekinge Institute of Technology, 2016
    [15]
    Fadhel M, Sekerinski E, Yao Shucai. A comparison of time series databases for storing water quality data[C] //Proc of the 12th Int Conf on Interactive Mobile Communication Technologies and Learning. Berlin: Springer, 2019: 302−313
    [16]
    The Cloud Native Computing Foundation (CNCF). Prometheus is a free software application used for event monitoring and alerting[EB/OL]. [2023-04-10].https://prometheus.io/
    [17]
    Grzesik P, Mrozek D. Comparative analysis of time series databases in the context of edge computing for low power sensor networks[C] //Proc of the 20th Int Conf on Computational Science. Berlin: Springer, 2020: 371−383
    [18]
    Riak. Riak TS is a distributed NoSQL key/value store optimized for time series data[EB/OL]. [2023-04-10].https://riak.com/products/riak-ts/index.html
    [19]
    The PostgreSQL Global Development Group. PostgreSQL is a free and open-source relational database management system [EB/OL]. [2023-04-10].https://www.postgresql.org/
    [20]
    SQLite Consortium. SQLite is a C-language library that implements a small, fast, self-contained, high-reliability, full-featured, SQL database engine [EB/OL]. [2023-04-10]. https://sqlite.org/index.html
    [21]
    Brillinger D R. Time Series: Data Analysis and Theory[M]. Philadelphia, PA: SIAM, 2001
    [22]
    International Electrotechnical Commission (IEC). IEC 61400-25-6: 2016: Wind energy generation systems-part 25-6: Communications for monitoring and control of wind power plants-Logical node classes and data classes for condition monitoring [S]. Geneva, Switzerland: International Electrotechnical Commission, 2016
    [23]
    Dotis-Georgiou A. When you want holt-winters instead of machine learning[EB/OL]. [2023-04-10]. https://www.influxdata.com/blog/when-you-want-holt-winters-instead-of-machine-learning/
    [24]
    DolphinDB. DolphinDB database[EB/OL]. [2023-04-10].https://dolphindb.com/
    [25]
    Lampson B, Sturgis H E. Crash recovery in a distributed data storage system[R]. Palo Alto, CA: Xerox Palo Alto Research Center, 1979
    [26]
    Gray J N. Notes on data base operating systems[M] //Operating Systems: An Advanced Course. Berlin: Springer, 2005: 393-481
    [27]
    Bernstein P A, Hadzilacos V, Goodman N. Concurrency Control and Recovery in Database Systems[M]. Reading, MA: Addison-Wesley, 1987
    [28]
    InfluxData. InfluxDB edge data replication[EB/OL]. [2023-04-10].https://www.influxdata.com/products/influxdb-edge-data-replication/
    [29]
    Yang Yang, Cao Qiang, Jiang Hong. EdgeDB: An efficient time-series database for edge computing[J]. IEEE Access, 2019, 7: 142295−142307 doi: 10.1109/ACCESS.2019.2943876
    [30]
    O’Neil P, Cheng E, Gawlick D, et al. The log-structured merge-tree (LSM-tree)[J]. Acta Informatica, 1996, 33(4): 351−385 doi: 10.1007/s002360050048
    [31]
    Lu Lanyue, Pillai T S, Gopalakrishnan H, et al. WiscKey: Separating keys from values in SSD-conscious storage[J]. ACM Transactions on Storage, 2017, 13(1): 1−28
    [32]
    Raju P, Kadekodi R, Chidambaram V, et al. Pebblesdb: Building key-value stores using fragmented log-structured merge trees[C] //Proc of the 26th Symp on Operating Systems Principles (SOSP). New York, ACM, 2017: 497−514
    [33]
    Doekemeijer K, Trivedi A. Key-Value stores on flash storage devices: A survey[J]. arXiv preprint, arXiv: 2205. 07975, 2022
    [34]
    Daim T U, Ploykitikoon P, Kennedy E, et al. Forecasting the future of data storage: Case of hard disk drive and flash memory[J]. Foresight, 2008, 10(5): 34−49 doi: 10.1108/14636680810918496
    [35]
    Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for structured data[J]. ACM Transactions on Computer Systems, 2008, 26(2): 1−26
    [36]
    Ghemawat S, Dean J. LevelDB database[EB/OL]. [2023-04-10].https://github.com/google/leveldb
    [37]
    Agrawal N, Prabhakaran V, Wobber T, et al. Design tradeoffs for SSD performance[C] //Proc of the 2008 USENIX Annual Technical Conf. Berkeley, CA: USENIX Association, 2008: 57–70
    [38]
    Yang Mingchang, Chang Yuming, Tsao C W, et al. Garbage collection and wear leveling for flash memory: Past and future[C] //Proc of the 2014 Int Conf on Smart Computing. Piscataway, NJ: IEEE, 2014: 66−73
    [39]
    Caulfield A M, De A, Coburn J, et al. Moneta: A high-performance storage array architecture for next-generation, non-volatile memories[C] //Proc of the 43rd Annual IEEE/ACM Int Symp on Microarchitecture (MICRO). Piscataway, NJ: IEEE, 2010: 385−395
    [40]
    Condit J, Nightingale E B, Frost C, et al. Better I/O through byte-addressable, persistent memory[C] //Proc of the 22nd ACM Symp on Operating Systems Principles (SOSP). New York: ACM, 2009: 133−146
    [41]
    Bender M A, Farach-Colton M, Johnson R, et al. Don’t thrash: How to cache your Hash on flash[J]. Proceedings of the VLDB Endowment, 2012, 5(11): 1627−1637 doi: 10.14778/2350229.2350275
    [42]
    Rottenstreich O, Keslassy I. The Bloom paradox: When not to use a Bloom filter[J]. IEEE/ACM Transactions on Networking, 2014, 23(3): 703−716
    [43]
    Fan Bin, Andersen D G, Kaminsky M, et al. Cuckoo filter: Practically better than Bloom[C] //Proc of the 10th ACM Int Conf on Emerging Networking Experiments and Technologies (CoNEXT). New York: ACM, 2014: 75−88
    [44]
    Graf T M, Lemire D. Xor filters: Faster and smaller than Bloom and cuckoo filters[J]. Journal of Experimental Algorithmics,2020,25:1−16
    [45]
    Pugh W. Skip lists: A probabilistic alternative to balanced trees[J]. Communications of the ACM, 1990, 33(6): 668−676 doi: 10.1145/78973.78977
    [46]
    Rothermel K, Mohan C. ARIES/NT: A recovery method based on write-ahead logging for nested transactions[C] //Proc of the 15th Int Conf on Very Large Data Bases (VLDB). San Francisco, CA: Morgan Kaufmann, 1989: 337–346
    [47]
    Balmau O, Didona D, Guerraoui R, et al. TRIAD: Creating synergies between memory, disk and log in log structured key-value stores[C] //Proc of the 2017 USENIX Annual Technical Conf (USENIX ATC 17). Berkeley, CA: USENIX Association, 2017: 363−375
    [48]
    Meta. RocksDB: A persistent key-value store for flash and RAM storage [EB/OL]. [2023-04-10].https://rocksdb.org
    [49]
    Wikimedia Foundation. Locality of reference[EB/OL]. [2023-04-10].https://en.wikipedia.org/wiki/Locality_of_reference
    [50]
    InfluxData. InfluxDB storage engine[EB/OL]. [2023-04-10].https://archive.docs.influxdata.com/influxdb/v0.11/concepts/storage_engine/
    [51]
    The Apache Software Foundation (ASF). Apache HBase is the Hadoop database, a distributed, scalable, big data store [EB/OL]. [2023-04-10].https://hbase.apache.org/
    [52]
    Hawkins B. KairosDB: Fast time series database on Cassandra[EB/OL]. [2023-04-10].https://kairosdb.github.io/
    [53]
    The H2 Database Team. H2 is an embeddable RDBMS written in Java. [EB/OL]. [2023-04-10].https://github.com/h2database/h2database
    [54]
    The Apache Software Foundation (ASF). Apache IoTDB [EB/OL]. [2023-04-10].https://iotdb.apache.org/
    [55]
    InfluxData. Time series index (TSI) overview[EB/OL]. [2023-04-10].https://docs.influxdata.com/influxdb/v1.8/concepts/time-series-index/
    [56]
    TAOS Data. TDengine is an open source, high-performance, cloud native time-series database[EB/OL]. [2023-04-10].https://tdengine.com/
    [57]
    The QuestDB Team. QuestDB is an open-source time-series database for high throughput ingestion and fast SQL queries with operational simplicity [EB/OL]. [2023-04-10].https://questdb.io/
    [58]
    The VictoriaMetrics Team. VictoriaMetrics: The high-performance, open source time series database & monitoring solution[EB/OL]. [2023-04-10].https://victoriametrics.com/
    [59]
    Shi Xuanhua, Feng Zezhao, Li Kaixi, et al. ByteSeries: An in-memory time series database for large-scale monitoring systems[C] //Proc of the 11th ACM Symp on Cloud Computing (SoCC). New York: ACM, 2020: 60−73
    [60]
    DataStax. How is data maintained[EB/OL]. [2023-04-10].https://docs.datastax.com/en/cassandra-oss/3.0/cassandra/dml/dmlHowDataMaintain.html#dmlHowDataMaintain__twcs-compaction
    [61]
    TDengine. High cardinality in time series data[EB/OL]. [2023-04-10].https://tdengine.com/tsdb/high-cardinality-in-time-series-data/
    [62]
    Ilyushchenko V. How databases handle 10 million devices in high-cardinality benchmarks[EB/OL]. [2023-04-10].https://questdb.io/blog/2021/06/16/high-cardinality-time-series-data-performance/
    [63]
    O’neil E J, O’neil P E, Weikum G. The LRU-K page replacement algorithm for database disk buffering[J]. ACM SIGMOD Record, 1993, 22(2): 297−306 doi: 10.1145/170036.170081
    [64]
    Dix P. Announcing InfluxDB IOx - The future core of InfluxDB built with rust and arrow[EB/OL]. [2023-04-10].https://www.influxdata.com/blog/announcing-influxdb-iox/
    [65]
    Comer D. Ubiquitous B-tree[J]. ACM Computing Surveys, 1979, 11(2): 121−137 doi: 10.1145/356770.356776
    [66]
    Flynn M J. Some computer organizations and their effectiveness[J]. IEEE Transactions on Computers, 1972, 100(9): 948−960
    [67]
    VictoriaMetrics. VictoriaMetrics cardinality explorer[EB/OL]. [2023-04-10].https://victoriametrics.com/blog/cardinality-explorer/
    [68]
    De La Briandais R. File searching using variable length keys[C] //Proc of the 1959 Western Joint Computer Conf. New York: ACM, 1959: 295−298
    [69]
    Samulowitz H, Reddy C, Sabharwal A, et al. Snappy: A simple algorithm portfolio[C] //Proc of the 16th Int Conf on Theory and Applications of Satisfiability Testing (SAT 2013). Berlin: Springer, 2013: 422−428
    [70]
    The Apache Software Foundation (ASF). Aligned timeseries[EB/OL]. [2023-04-10].https://iotdb.apache.org/UserGuide/Master/Data-Concept/Data-Model-and-Terminology.html#aligned-timeseries
    [71]
    Yao Ting, Zhang Yiwen, Wan Jiguang, et al. MatrixKV: Reducing write stalls and write amplification in LSM-tree based KV stores with a matrix container in NVM[C] // Proc of the 2020 USENIX Annual Technical Conf. Berkeley, CA: USENIX Association, 2020: 17−31
    [72]
    Narayanan D, Thereska E, Donnelly A, et al. Migrating server storage to SSDs: Analysis of tradeoffs[C] //Proc of the 4th ACM European Conf on Computer Systems (EuroSys). New York: ACM, 2009: 145-158
    [73]
    RocksDB. Strategies to reduce write amplification[EB/OL]. [2023-04-10].https://github.com/facebook/rocksdb/issues/19
    [74]
    Luo Chen, Carey M J. LSM-based storage techniques: A survey[J]. The VLDB Journal, 2020, 29(1): 393−418 doi: 10.1007/s00778-019-00555-y
    [75]
    Kerrisk M. Fsync: Standard C library[EB/OL]. [2023-04-10].https://man7.org/linux/man-pages/man2/fdatasync.2.html
    [76]
    Valialkin A. WAL usage looks broken in modern time series databases [EB/OL]. [2023-04-10].https://valyala.medium.com/wal-usage-looks-broken-in-modern-time-series-databases-b62a627ab704
    [77]
    Dias L B, Silva D S, de Sousa Junior R T, et al. C* DynaConf: An Apache Cassandra auto-tuning tool for Internet of things data[C] //Proc of the 6th Int Conf on Internet of Things, Big Data and Security. Setúbal, Portugal: SciTePress, 2021: 92−102
    [78]
    Tangwongsan K, Hirzel M, Schneider S. Optimal and general out-of-order sliding-window aggregation[J]. Proceedings of the VLDB Endowment, 2019, 12(10): 1167−1180 doi: 10.14778/3339490.3339499
    [79]
    Grulich P M, Traub J, Breß S, et al. Generating reproducible out-of-order data streams[C] //Proc of the 13th ACM Int Conf on Distributed and Event-based Systems. New York: ACM, 2019: 256−257
    [80]
    Weiss W, Jimenez V J E, Zeiner H. Dynamic buffer sizing for out-of-order event compensation for time-sensitive applications[J]. ACM Transactions on Sensor Networks, 2020, 17(1): 1−23
    [81]
    张凌哲,黄向东,乔嘉林,等. 面向时序数据的两阶段日志结构合并树文件合并框架[J]. 计算机应用,2021,41(3):618−622

    Zhang Lingzhe, Huang Xiangdong, Qiao Jialin, et al. Two-stage file compaction framework by log-structured merge-tree for time series data[J]. Journal of Computer Application, 2021, 41(3): 618−622 (in Chinese)
    [82]
    Kang Yuyuan, Huang Xiangdong, Song Shaoxu, et al. Separation or not: On handing out-of-order time-series data in leveled LSM-tree[C] //Proc of the 38th Int Conf on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2022: 3340−3352
    [83]
    Huang Xiangdong, Wang Jianmin, Wong R, et al. Pisa: An index for aggregating big time series data[C] //Proc of the 25th ACM Int on Conf on Information and Knowledge Management (CIKM). New York: ACM, 2016: 979−988
    [84]
    Qiao Jialin, Huang Xiangdong, Wang Jianmin, et al. Dual-PISA: An index for aggregation operations on time series data[J]. Information Systems, 2020, 87(C): 101427
    [85]
    赵东明,邱圆辉,康瑞,等. 面向聚合查询的 Apache IoTDB 物理元数据管理[J]. 软件学报,2022,34(3):1027−1048

    Zhao Dongming, Qiu Yuanhui, Kang Rui, et al. Physical metadata management in Apache IoTDB for aggregate queries[J]. Journal of Software, 2022, 34(3): 1027−1048 (in Chinese)
    [86]
    InfluxData. Data retention in InfluxDB[EB/OL]. [2023-04-10].https://docs.influxdata.com/influxdb/v2.7/reference/internals/data-retention/
    [87]
    Xiao Jinzhao, Huang Yuxiang, Hu Changyu, et al. Time series data encoding for efficient storage: A comparative analysis in Apache IoTDB[J]. Proceedings of the VLDB Endowment, 2022, 15(10): 2148−2160 doi: 10.14778/3547305.3547319
    [88]
    The Apache Software Foundation (ASF). Encoding methods[EB/OL]. [2023-04-10].https://iotdb.apache.org/UserGuide/Master/Data-Concept/Encoding.html
    [89]
    Golomb S. Run-length encodings[J]. IEEE Transactions on Information Theory, 1966, 12(3): 399−401 doi: 10.1109/TIT.1966.1053907
    [90]
    Campobello G, Segreto A, Zanafi S, et al. RAKE: A simple and efficient lossless compression algorithm for the Internet of things[C] //Proc of the 25th European Signal Processing Conf. Piscataway, NJ: IEEE, 2017: 2581−2585
    [91]
    Spiegel J, Wira P, Hermann G. A comparative experimental study of lossless compression algorithms for enhancing energy efficiency in smart meters[C] //Proc of the 16th IEEE Int Conf on Industrial Informatics. Piscataway, NJ: IEEE, 2018: 447−452
    [92]
    Blalock D, Madden S, Guttag J. Sprintz: Time series compression for the Internet of things[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 1−23
    [93]
    Welch T A. A technique for high-performance data compression[J]. Computer, 1984, 17(6): 8−19 doi: 10.1109/MC.1984.1659158
    [94]
    Howard P G, Vitter J S. Parallel lossless image compression using Huffman and arithmetic coding[C] //Proc of the Data Compression Conf. Piscataway, NJ: IEEE, 1992: 299−308
    [95]
    Anh V N, Moffat A. Index compression using 64-bit words[J]. Software: Practice and Experience, 2010, 40(2): 131−147 doi: 10.1002/spe.948
    [96]
    AVEVA. AVEVA PI server[EB/OL]. [2023-04-10].https://www.aveva.com/en/products/aveva-pi-server/
    [97]
    Bristol E H. Swinging door trending: Adaptive trend recording[C] //Proc of the ISA National Conf. 1990: 749−754. [2023-04-10].https://cir.nii.ac.jp/crid/1574231875546173824
    [98]
    Feng Xiaodong, Cheng Changling, Liu Changling, et al. An improved process data compression algorithm[C] //Proc of the 4th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE, 2002: 2190−2193
    [99]
    Gailly J L. GNU Gzip[EB/OL]. [2023-04-10].https://www.gnu.org/software/gzip/
    [100]
    Bartík M, Ubik S, Kubalik P. LZ4 compression algorithm on FPGA[C] //Proc of the IEEE Int Conf on Electronics, Circuits, and Systems. Piscataway, NJ: IEEE, 2015: 179−182
    [101]
    Cheng Hongze. Compressing time series data[EB/OL]. [2023-04-10].https://tdengine.com/compressing-time-series-data/
    [102]
    Jensen S K, Pedersen T B, Thomsen C. ModelarDB: Modular model-based time series management with Spark and Cassandra[J]. Proceedings of the VLDB Endowment, 2018, 11(11): 1688−1701 doi: 10.14778/3236187.3236215
    [103]
    Eichinger F, Efros P, Karnouskos S, et al. A time-series compression technique and its application to the smart grid[J]. The VLDB Journal, 2015, 24(2): 193−218 doi: 10.1007/s00778-014-0368-8
    [104]
    Chiarot G, Silvestri C. Time series compression survey[J]. ACM Computing Surveys, 2023, 55(10): 1−32
    [105]
    Yu Xinyang, Peng Yanqing, Li Feifei, et al. Two-level data compression using machine learning in time series database[C] //Proc of the 36th Int Conf on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2020: 1333−1344
    [106]
    Schizofreny. Middle-out compression for time-series data[EB/OL]. [2023-04-10].https://github.com/schizofreny/middle-out
    [107]
    TAOS Data. Tiered storage[EB/OL]. [2023-04-10].https://docs.tdengine.com/tdinternal/arch/#tiered-storage
    [108]
    Thulab. iot-benchmark[EB/OL]. [2023-04-10].https://github.com/thulab/iot-benchmark
    [109]
    Timescale. TimescaleDB vs. InfluxDB: Purpose built differently for time-series data[EB/OL]. [2023-04-10].https://www.timescale.com/blog/timescaledb-vs-influxdb-for-time-series-data-timescale-influx-sql-nosql-36489299877/
    [110]
    Timescale. Time series benchmark suite[EB/OL]. [2023-04-10].https://github.com/timescale/tsbs
    [111]
    Valialkin A. High-cardinality TSDB benchmarks: VictoriaMetrics vs TimescaleDB vs InfluxDB[EB/OL]. [2023-04-10].https://valyala.medium.com/high-cardinality-tsdb-benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b
    [112]
    TAOS Data. DevOps performance comparison: InfluxDB and TimescaleDB vs TDengine[EB/OL]. [2023-04-10]. https://tdengine.com/devops-performance-comparison-influxdb-and-timescaledb-vs-tdengine/
    [113]
    The QuestDB Team. Comparing InfluxDB, TimescaleDB, and QuestDB Time-Series Databases[EB/OL]. [2023-04-10]. https://questdb.io/blog/comparing-influxdb-timescaledb-questdb-time-series-databases/
    [114]
    Liu Rui, Yuan Juan. Benchmarking time series databases with IoTDB-benchmark for IoT scenarios[J]. arXiv preprint, arXiv: 1901. 08304, 2019
    [115]
    The Transaction Processing Performance Council (TPC). TPCx-IoT[EB/OL]. [2023-04-10].https://www.tpc.org/tpcx-iot/default5.asp
    [116]
    Poess M, Nambiar R, Kulkarni K, et al. Analysis of TPCx-IoT: The first industry standard benchmark for IoT gateway systems[C] //Proc of the 34th Int Conf on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2018: 1519−1530
    [117]
    InfluxData. influxdb-comparisons[EB/OL]. [2023-04-10].https://github.com/influxdata/influxdb-comparisons
    [118]
    Hao Yuanzhe, Qin Xiongpai, Chen Yueguo, et al. TS-Benchmark: A benchmark for time series databases[C] //Proc of the 37th Int Conf on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2021: 588−599
    [119]
    Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint, arXiv: 1511. 06434, 2016
    [120]
    Shah B, Jat P, Sashidhar K. Performance study of time series databases[J]. arXiv preprint, arXiv: 2208. 13982, 2022
    [121]
    The Apache Software Foundation (ASF). Druid is a high performance, real-time analytics database[EB/OL]. [2023-04-10].https://druid.apache.org/
    [122]
    Mei Fei, Cao Qiang, Jiang Hong, et al. SifrDB: A unified solution for write-optimized key-value stores in large datacenter[C]//Proc of the Symp on Cloud Computing (SoCC). New York: ACM, 2018: 477−489
    [123]
    Chen Feng, Hou Binbing, Lee R. Internal parallelism of flash memory-based solid-state drives[J]. ACM Transactions on Storage, 2016, 12(3): 1−39
    [124]
    Chen Feng, Lee R, Zhang Xiaodong. Essential roles of exploiting internal parallelism of flash memory based solid state drives in high-speed data processing[C] //Proc of the 17th Int Symp on High Performance Computer Architecture (HPCA). Piscataway, NJ: IEEE, 2011: 266−277
    [125]
    Wang Peng, Sun Guangyu, Jiang Song, et al. An efficient design and implementation of LSM-tree based key-value store on open-channel SSD[C/OL] //Proc of the 9th European Conf on Computer Systems (EuroSys). New York: ACM, 2014[2023-04-10].https://dl.acm.org/doi/10.1145/2592798.2592804
    [126]
    Kannan S, Bhat N, Gavrilovska A, et al. Redesigning LSMs for nonvolatile memory with NoveLSM[C] //Proc of the 2018 USENIX Annual Technical Conf (USENIX ATC 18). Berkeley, CA: USENIX Association, 2018: 993−1005
    [127]
    游理通,王振杰,黄林鹏. 一个基于日志结构的非易失性内存键值存储系统[J]. 计算机研究与发展,2018,55(9):2038−2049

    You Litong, Wang Zhenjie, Huang Linpeng. A log-structured key-value store based on non-volatile memory[J]. Journal of Computer Research and Development, 2018, 55(9): 2038−2049 (in Chinese)
    [128]
    董昊文,张超,李国良,等. 云原生数据库综述[J/OL]. 软件学报,2023[2023-04-10]. http://www.jos.org.cn/jos/article/abstract/6952

    Dong Haowen, Zhang Chao, Li Guoliang, et al. A survey of cloud-native databases[J/OL]. Journal of Software, 2023[2023-04-10]. http://www.jos.org.cn/jos/article/abstract/6952 (in Chinese)
    [129]
    孟小峰,马超红,杨晨. 机器学习化数据库系统研究综述[J]. 计算机研究与发展,2019,56(9):1803−1820

    Meng Xiaofeng, Ma Chaohong, Yang Chen. Survey on machine learning for database systems[J]. Journal of Computer Research and Development, 2019, 56(9): 1803−1820 (in Chinese)
  • Cited by

    Periodical cited type(5)

    1. 项秋艳,訾玲玲,丛鑫. 改进自适应模型池的在线异常检测算法. 电子学报. 2024(07): 2503-2514 .
    2. 吕飞亚,梁艳,刘炜,宫卓宏. 山西预警台站信息管理系统的设计与开发. 山西地震. 2024(03): 35-38 .
    3. 朱茂盛,王宝晗,康曼聪,于巍,杨利超. 智能物联网技术赋能算网一体数据库的效能优化. 计算机研究与发展. 2024(11): 2835-2845 . 本站查看
    4. 王晓东,郭亮亮. 新一代工业物联网数据管理关键技术研究. 自动化博览. 2024(11): 70-72 .
    5. 李登峰,邓子龙,李擎伟. 基于插件化技术的港口装卸物联网平台实施方案. 港口装卸. 2024(06): 37-40+43 .

    Other cited types(7)

Catalog

    Article views (425) PDF downloads (252) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return