• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Qin Zhen, Zhuang Tianming, Zhu Guosong, Zhou Erqiang, Ding Yi, Geng Ji. Survey of Security Attack and Defense Strategies for Artificial Intelligence Model[J]. Journal of Computer Research and Development, 2024, 61(10): 2627-2648. DOI: 10.7544/issn1000-1239.202440449
Citation: Qin Zhen, Zhuang Tianming, Zhu Guosong, Zhou Erqiang, Ding Yi, Geng Ji. Survey of Security Attack and Defense Strategies for Artificial Intelligence Model[J]. Journal of Computer Research and Development, 2024, 61(10): 2627-2648. DOI: 10.7544/issn1000-1239.202440449

Survey of Security Attack and Defense Strategies for Artificial Intelligence Model

Funds: This work was supported by the National Natural Science Foundation of China (62372083, 62072074, 62076054, 62027827, 62002047), the Sichuan Provincial Science and Technology Plan Project (2024NSFTD0005, 2022JDJQ0039), and the Fundamental Research Funds for the Central Universities (ZYGX2021YGLH212, ZYGX2022YGRH012).
More Information
  • Author Bio:

    Qin Zhen: born in 1983. PhD, professor, PhD supervisor. His main research interests include multi-source data fusion analysis, and artificial intelligence security and application

    Zhuang Tianming: born in 1998. PhD. His main research interests include human action recognition and image processing

    Zhu Guosong: born in 1997. PhD. His main research interests include image processing and multidimensional reconstruction

    Zhou Erqiang: born in 1980. PhD, associate professor. His main research interests include natural language processing, and artificial intelligence security and applications

    Ding Yi: born in 1985. PhD, professor, PhD supervisor. His main research interests include medical image processing and computer-aided diagnosis

    Geng Ji: born in 1963. PhD, professor. His main research interests include deep learning, open computer systems and network security, and information system security

  • Received Date: May 30, 2024
  • Revised Date: July 17, 2024
  • Available Online: September 13, 2024
  • In recent years, the rapid development of artificial intelligence technology, particularly deep learning, has led to its widespread application in various fields such as computer vision and natural language processing. However, recent research indicates potential security risks associated with these advanced AI models could compromise their reliability. In light of this concern, this survey delves into cutting-edge research findings pertaining to security attacks, attack detection, and defense strategies for artificial intelligence models. Specifically regarding model security attacks, our work focuses on elucidating the principles and technical status of adversarial attacks, model inversion attacks, and model theft attacks. With regards to model attack detection methods explored in this paper, they include defensive distillation techniques, regularization approaches, outlier detection, robust statistics. As for model defense strategies examined in this study, they encompass adversarial training measures, model structure defense mechanisms, query control defenses along with other technical means. This comprehensive survey not only summarizes but also expands upon techniques and methodologies relevant to ensuring the security of artificial intelligence models thereby providing a solid theoretical foundation for their secure applications while simultaneously enabling researchers to gain a better understanding of the current state-of-the-art research within this field facilitating informed decisions when selecting future research directions.

  • [1]
    Chen Zhuo, Yin Fei, Yang Qing, et al. Cross-lingual text image recognition via multi-hierarchy cross-modal mimic[J]. IEEE Transactions on Multimedia, 2023, 25: 4830−4841
    [2]
    Yan Tiantian, Li Haojie, Sun Baoli, et al. Discriminative feature mining and enhancement network for low-resolution fine-grained image recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5319−5330
    [3]
    Chen Jicheng, Zhang Yongkang, Teng Siyu, et al. ACP-based energy-efficient schemes for sustainable intelligent transportation systems[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(5): 3224−3227
    [4]
    Ling Yating, Wang Yuling, Dai Wenli, et al. MTANet: Multi-task attention network for automatic medical image segmentation and classification[J]. IEEE Transactions on Medical Imaging, 2024, 43(2): 674−685
    [5]
    Liu Hongmin, Jin Fan, Zeng Hui, et al. Image enhancement guided object detection in visually degraded scenes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023[2024-05-31]. https://ieeexplore.ieee.org/document/10130799
    [6]
    Zhou Chulun, Liang Yunlong, Meng Fandong, et al. A multi-task multi-stage transitional training framework for neural chat translation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 7970−7985
    [7]
    Liu Jia, Li Tianrui, Ji Shengong, et al. Urban flow pattern mining based on multi-source heterogeneous data fusion and knowledge graph embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35: 2133−2146
    [8]
    Ateniese G, Mancini L V, Spognardi A, et al. Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers[J]. International Journal of Security and Networks, 2015, 10(3): 137−150 doi: 10.1504/IJSN.2015.071829
    [9]
    Mehnaz S, Dibbo S V, De V R, et al. Are your sensitive attributes private? Novel model inversion attribute inference attacks on classification models[C]//Proc of the 31st USENIX Security Symp (USENIX Security 22). Berkeley, CA: USENIX Association, 2022: 4579−4596
    [10]
    Juuti M, Szyller S, Marchal S, et al. PRADA: Protecting against DNN model stealing attacks[C]//Proc of IEEE European Symp on Security and Privacy. Piscataway, NJ: IEEE, 2019: 512–527
    [11]
    Battista B, Blaine N, Pavel L. Support vector machines under adversarial label noise[C]//Proc of Asion Conf on Machine Learning. New York: PMLR, 2011: 97−112
    [12]
    Ru B, Cobb A, Blaas A, et al. Bayesopt adversarial attack[C]//Proc of Int Conf on Learning Representations. 2019. https://openreview.net/pdf?id=Hkem-lrtvH
    [13]
    Wang Binghui, Gong Neli, Zhenqiang. Stealing hyperparameters in machine learning[C]//Proc of 2018 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2018: 36−52
    [14]
    Yang Q, Liu Y, Chen T, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1−19
    [15]
    Papernot N, McDaniel P, Wu Xi, et al. Distillation as a defense to adversarial perturbations against deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(10): 1631−1643
    [16]
    Abadi M, Chu A, Goodfellow I, et al. Deep learning with differential privacy[C]//Proc of the 2016 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2016: 308−318
    [17]
    Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey[J]. ACM Computing Surveys, 2009, 41(3): 1−58
    [18]
    Seidman J H, Fazlyzb M, Preciado V M. Robust deep learning as optimal control: Insights and convergence guarantees[C]//Proc of the 2nd Conf on Learning for Dynamics and Control. New York: PMLR, 2020: 884−893
    [19]
    Warner S L. Randomized response: A survey technique for eliminating evasive answer bias[J]. Journal of the American Statistical Association, 1965, 60(309): 63−69 doi: 10.1080/01621459.1965.10480775
    [20]
    Zhou Wen, Hou Xin, Chen Yongjun, et al. Transferable adversarial perturbations[C]//Proc of the European Conf on Computer Vision (ECCV). Piscataway, NJ: IEEE, 2018, 452−467
    [21]
    Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint, arXiv: 1412.6572, 2014
    [22]
    Carlini N, Wagner D. Towards evaluating the robustness of neural networks[C]//Proc of IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2017: 39−57
    [23]
    Fredrikson M, Jha S, Ristenpart T. Model inversion attacks that exploit confidence information and basic countermeasures[C]//Proc of the 22nd ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2015: 1322−1333
    [24]
    Yang Z, Zhang J, Chang E C, et al. Neural network inversion in adversarial setting via background knowledge alignment[C]//Proc of the 2019 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2019: 225−240
    [25]
    Zhu Yuankun, Cheng Yueqiang, Zhou Husheng, et al. Hermes attack: Steal DNN models with lossless inference accuracy[C]//Proc of the 30th USENIX Security Symp (USENIX Security 21). Berkeley, CA: USENIX Association, 2021: 1973−1988
    [26]
    Reith R N, Schneider T, Tkachenko O. Efficiently stealing your machine learning models[C]//Proc of the 18th ACM Workshop on Privacy in the Electronic Society. New York: ACM, 2019: 198−210
    [27]
    Chandrasekaran V, Chaudhuri K, Giacomelli I, et al. Exploring connections between active learning and model extraction[C]//Proc of the 29th USENIX Security Symp (USENIX Security 20). Berkeley, CA: USENIX Association, 2020: 1309−1326
    [28]
    Orekondy T, Schiele B, Fritz M. Knockoff nets: Stealing functionality of black-box models[C]//Proc of the IEEE/CVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 4954−4963
    [29]
    Battista B, Blaine N, Pavel L. Poisoning attacks against support vector machines[C]//Proc of the Int Conf on Machine Learning, Edinburgh, Scotland, New York: ICML 2012: 1467−1474
    [30]
    Cinà A E, Vascon S, Demontis A, et al. The hammer and the nut: Is bilevel optimization really needed to poison linear classifiers?[C]//Proc of Int Joint Conf on Neural Networks. Piscataway, NJ: IEEE, 2021: 1−8
    [31]
    Carnerero C J, Muñoz-González L, Spencer P, et al. Hyperparameter learning under data poisoning: Analysis of the influence of regularization via multiobjective bilevel optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023[2024-5-31]. https://ieeexplore.ieee.org/document/10235261
    [32]
    Mei Shike, Zhu Xiaojin. Using machine teaching to identify optimal training-set attacks on machine learners[C]//Proc of AAAI Conf on Artificial Intelligence. Palo Alto, CA: AAAI, 2015, 29(1): 2871−2877
    [33]
    Feng Ji, Cai Qizhi, Zhou Zhihua. Learning to confuse: Generating training time adversarial data with auto-encoder[J]. Advances in Neural Information Processing Systems, 2019[2024-05-31]. https://proceedings.neurips.cc/paper_files/paper/2019/file/1ce83e5d4135b07c0b82afffbe2b3436-Paper.pdf
    [34]
    Koh P W, Liang P. Understanding black-box predictions via influence functions[C]//Proc of Int Conf on Machine Learning. New York: PMLR, 2017: 1885−1894
    [35]
    Jagielski M, Severi G, Pousette H N, et al. Subpopulation data poisoning attacks[C]//Proc of the 2021 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2021: 3104−3122
    [36]
    Gu Tianyu, Liu Kang, Dolan-Gavitt B, et al. Badnets: Evaluating backdooring attacks on deep neural networks[J]. IEEE Access, 2019, 7: 47230−47244
    [37]
    Chu Cheng, Chen Fan, Richerme P, et al. QDoor: Exploiting approximate synthesis for backdoor attacks in quantum neural networks[C]//Proc of IEEE Int Conf on Quantum Computing and Engineering. Piscataway, NJ: IEEE, 2023, 1: 1098−1106
    [38]
    Zhang Zhengming, Tian Muchen, Li Chunguo, et al. Poison neural network-based mmwave beam selection and detoxification with machine unlearning[J]. IEEE Transactions on Communications, 2022, 71(2): 877−892
    [39]
    Zhong Haoti, Liao Cong, Squicciarini A C, et al. Backdoor embedding in convolutional neural network models via invisible perturbation[C]//Proc of the 10th ACM Conf on Data and Application Security and Privacy. New York: ACM, 2020: 97−108
    [40]
    Salem A, Yang Zhang, Humbert M, et al. Ml-leaks: Model and data independent membership inference attacks and defenses on machine learning models[J]. arXiv preprint, arXiv: 1806.01246, 2018
    [41]
    Sablayrolles A, Douze M, Schmid C, et al. White-box vs black-box: Bayes optimal strategies for membership inference[C]//Proc of Int Conf on Machine Learning. New York: PMLR, 2019: 5558−5567
    [42]
    Hisamoto S, Post M, Duh K. Membership inference attacks on sequence-to-sequence models: Is my data in your machine translation system?[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 49−63 doi: 10.1162/tacl_a_00299
    [43]
    Jamie H, Luca M, George D, et al. LOGAN: Membership inference attacks against generative models[J].arXiv preprint, arXiv: 1705.07663.2017
    [44]
    Carlini N, Wagner D. Towards evaluating the robustness of neural networks[C]//Proc of 2017 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2017: 39−57
    [45]
    Yu Lei, Liu Ling, Calton P, et al. Differentially private model publishing for deep learning[C]//Proc of IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2019: 332−349
    [46]
    Steinhardt J, Koh P W W, Liang P S. Certified defenses for data poisoning attacks[J]. Advances in neural information processing systems, 2017[2024-05-31]. https://proceedings.neurips.cc/paper_files/paper/2017/file/9d7311ba459f9e45ed746755a32dcd11-Paper.pdf
    [47]
    Pang Guansong, Shen Chunhua, Cao Longbin, et al. Deep learning for anomaly detection: A review[J]. ACM Computing Surveys, 2021: 1−38
    [48]
    Diakonikolas I, Kamath G, Kane D, et al. Robust estimators in high-dimensions without the computational intractability[J]. SIAM Journal on Computing, 2019, 48(2): 742−864 doi: 10.1137/17M1126680
    [49]
    Chen Bo, Hawkins C, Yazdani K, et al. Edge differential privacy for algebraic connectivity of graphs[C]//Proc of the 60th IEEE Conf on Decision and Control (CDC). Piscataway, NJ: IEEE, 2021: 2764−2769
    [50]
    Jian Xun, Wang Yue, Chen Lei, et al. Publishing graphs under node differential privacy[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 4164−4177 doi: 10.1109/TKDE.2021.3128946
    [51]
    Yan Jun, Liu Hai, Wu Zhenqiang. An efficient differential privacy method with wavelet transform for edge weights of social network[J]. International Journal of Network Security, 2022, 24(2): 181−192
    [52]
    Wang Hengzhi, Yang Yongjian, Wang En, et al. Bilateral privacy-preserving worker selection in spatial crowdsourcing[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 20(3): 2533−2546
    [53]
    Yan Ziang, Guo Yiwen, Zhang Changshui. Deep defense: Training dnns with improved adversarial robustness[J]. Advances in Neural Information Processing Systems. San Diego: NIPS, 2018, 31.

    Yan Ziang, Guo Yiwen, Zhang Changshui. Deep defense: Training dnns with improved adversarial robustness[J]. Advances in Neural Information Processing Systems. San Diego: NIPS, 2018, 31.
    [54]
    Yuan Xiaoyong, He Pan, Zhu Qile, et al. Adversarial examples: Attacks and defenses for deep learning[J]. IEEE transactions on neural networks and learning systems, 2019, 30(9): 2805−2824

    Yuan Xiaoyong, He Pan, Zhu Qile, et al. Adversarial examples: Attacks and defenses for deep learning[J]. IEEE transactions on neural networks and learning systems,2019,30(9):2805−2824
    [55]
    Papernot N, McDaniel P, Jha S, et al. The limitations of deep learning in adversarial settings[C]//Proc of 2016 IEEE European Symp on Security and Privacy (EuroS&P). Piscataway, NJ: IEEE, 2016: 372−387
    [56]
    Ma Xingjun, Li Bo, Wang Yisen, et al. Characterizing adversarial subspaces using local intrinsic dimensionality[J]. arXiv preprint, arXiv: 1801.02613, 2018
    [57]
    Song Yang, Kim T, Nowozin S, et al. PixelDefend: Leveraging generative models to understand and defend against adversarial examples[J]. arXiv preprint, arXiv: 1710.10766, 2017
    [58]
    Goodfellow, Ian J, Shlens J, et al. Explaining and harnessing adversarial examples[J]. arXiv preprint, arXiv: 1412.6572, 2014
    [59]
    Wang Jingyuan, Wu Yufan, Li Mingxuan, et al. Interpretability is a kind of safety: An interpreter-based ensemble for adversary defense[C]//Proc of the 26th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining. New York: ACM, 2020: 15−24
    [60]
    Xie Saining, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition, Piscataway, NJ: IEEE 2017: 1492−1500
    [61]
    任奎, 孟泉润, 闫守琨, 等. 人工智能模型数据泄露的攻击与防御研究综述[J]. 网络与信息安全学报,2021,7(1):1−10

    Ren Kui, Meng Quanrun, Yan Shoukun, et al. A survey on attacks and defenses of data leakage in artificial intelligence models[J]. Journal of Cyber Security, 2021, 7(1): 1−10 (in Chinese)
    [62]
    Kesarwani M, Mukhoty B, Arya V, et al. Model extraction warning in MLaaS paradigm[C]//Proc of the 34th Annual Computer Security Applications Conf. New York: ACM 2018: 371−380
    [63]
    He Yingzhe, Meng Guozhu, Chen Kai, et al. Towards privacy and security of deep learning systems: a survey[J]. arXiv preprint, arXiv:1911.12562, 2019
    [64]
    Roh Y, Heo G, Whang S E. A survey on data collection for machine learning: A big data - AI integration perspective[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(4): 1328−1347
    [65]
    McMahan H B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proc of the 20th Int Conf on Artificial Intelligence and Statistics. New York: PMLR, 2017: 1273−1282
    [66]
    熊世强, 何道敏, 王振东, 等. 联邦学习及其安全与隐私保护研究综述[J]. 计算机工程,2024,50(5):1−17

    Xiong Shiqiang, He Daomin, Wang Zhendong, et al. A survey on federated learning and its security and privacy protection[J]. Computer Engineering, 2024, 50(5): 1−17 (in Chinese)
    [67]
    肖雄,唐卓,肖斌,等. 联邦学习的隐私保护与安全防御研究综述[J]. 计算机学报,2023,46(5):1019−1044

    Xiao Xiong, Tang Zhuo, Xiao Bin, et al. A survey on privacy protection and security defenses in federated learning[J]. Journal of Computer Research and Development, 2023, 46(5): 1019−1044 (in Chinese)
    [68]
    Yang Hongwei, He Hui, Zhang Weizhe, et al. FedSteg: A federated transfer learning framework for secure image steganalysis[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1084−1094
    [69]
    Zhang C, Ekanut C, Zhen L L, et al. Augmented multi-party computation against gradient leakage in federated learning[J]. IEEE Transactions on Big Data, 2022: 1−10
    [70]
    Hosseini S M, Sikaroudi M, Babaie M, et al. Cluster based secure multi-party computation in federated learning for histopathology images[C]//Medical Image Computing and Computer Assisted Intervention Society. Berlin: Springer, 2022: 110−118
    [71]
    Sun Litong, Du Runmeng, He Daojing, et al. Feature engineering framework based on secure multi-party computation in federated learning[C]//Proc of 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). Piscataway, NJ: IEEE, 2021, 487−494
    [72]
    Park J, Lim H, et al. Privacy-preserving federated learning using homomorphic encryption with different encryption keys[C]//Proc of 2022 13th Int Conf on Information and Communication Technology Convergence (ICTC). Piscataway, NJ: IEEE 2022: 1869−1871
    [73]
    陈景雪,高克寒,周尔强,等. 物联网环境下鲁棒的源匿名联邦学习洗牌协议[J]. 计算机研究与发展,2023,60(10):2218−2233

    Chen Jingxue, Gao Kehan, Zhou Erqiang, et al. Robust source anonymous federated learning shuffling protocol in the Internet of things environment[J]. Journal of Computer Research and Development, 2023, 60(10): 2218−2233 (in Chinese)
    [74]
    Wang Chen, Wu Xinkui, Liu Gaoyang, et al. Safeguarding cross-silo federated learning with local differential privacy[J]. Digital Communications and Networks, 2022, 8(4): 446−454 doi: 10.1016/j.dcan.2021.11.006
    [75]
    Byrd D, Mugunthan V, Polychroniadou A, et al. Collusion resistant federated learning with oblivious distributed differential privacy[C]//Proc of the 3rd ACM Int Conf on AI in Finance. New York: ACM, 2022: 114−122
    [76]
    Xu Tianxing, Zhu Kongling, Rzejak A, et al. Distributed learning in trusted execution environment: A case study of federated learning in SGX[C]//Proc of the 7th IEEE Int Conf on Network Intelligence and Digital Content (IC-NIDC). Piscataway, NJ: IEEE, 2021: 450−454
    [77]
    Mo Fan, Haddadi H, Katevas K, et al. PPFL: Privacy-preserving federated learning with trusted execution environments[C]//Proc of the 19th Annual Int Conf on Mobile Systems, Applications, and Services. New York: ACM, 2021: 94−108
    [78]
    Chen Yu, Luo Fang, Li Tang, et al. A training-integrity privacy-preserving federated learning scheme with trusted execution environment[J]. Information Sciences, 2020, 522: 69−79
    [79]
    赵蕾, 桂小林, 邵屹样, 等. 数字图像多功能水印综述[J]. 计算机辅助设计与图形学学报,2022,36(2):1−28

    Zhao Lei, Gui Xiaolin, Shao Yiyang, et al. A survey on multifunctional watermarking in digital images[J]. Journal of Computer-Aided Design and Computer Graphics, 2022, 36(2): 1−28 (in Chinese)
    [80]
    Li Leuda, Li Shushang, Abraham A, et al. Geometrically invariant image watermarking using polar harmonic transforms[J]. Information Sciences, 2012, 199: 1−19 doi: 10.1016/j.ins.2012.02.062
    [81]
    Zhu Dandan, Zhang Xiuping, Zhang Youliang, et al. A new image watermarking algorithm using NSCT and Harris detector in green manufacturing[J]. Applied Mechanics and Materials, 2013, 340: 277−282 doi: 10.4028/www.scientific.net/AMM.340.277
    [82]
    刘颖,杨星,朱婷鸽. 基于结构森林边缘和 SIFT 的鲁棒水印算法[J]. 激光与光电子学进展,2021,58(6):339−346

    Liu Ying, Yang Xing, Zhu Tingge. Robust watermarking algorithm based on structured forest edges and SIFT[J]. Advances in Laser and Optoelectronics, 2021, 58(6): 339−346 (in Chinese)
    [83]
    侯翔,闵连权. 基于 SURF 特征区域的鲁棒水印算法[J]. 武汉大学学报:信息科学版,2017,42(3):421−426

    Hou Xiang, Min Lianquan. Robust watermarking algorithm based on SURF feature regions[J]. Journal of Wuhan University (Information Science Edition), 2017, 42(3): 421−426 (in Chinese)
    [84]
    Pourhadi A, Mahdavi-Nasab H. A robust digital image watermarking scheme based on BAT algorithm optimization and SURF detector in SWT domain[J]. Multimedia Tools and Applications, 2020, 79(29-30): 21653−21677 doi: 10.1007/s11042-020-08960-0
  • Related Articles

    [1]Li Nan, Ding Yidong, Jiang Haoyu, Niu Jiafei, Yi Ping. Jailbreak Attack for Large Language Models: A Survey[J]. Journal of Computer Research and Development, 2024, 61(5): 1156-1181. DOI: 10.7544/issn1000-1239.202330962
    [2]Wang Mengru, Yao Yunzhi, Xi Zekun, Zhang Jintian, Wang Peng, Xu Ziwen, Zhang Ningyu. Safety Analysis of Large Model Content Generation Based on Knowledge Editing[J]. Journal of Computer Research and Development, 2024, 61(5): 1143-1155. DOI: 10.7544/issn1000-1239.202330965
    [3]Chen Xuanting, Ye Junjie, Zu Can, Xu Nuo, Gui Tao, Zhang Qi. Robustness of GPT Large Language Models on Natural Language Processing Tasks[J]. Journal of Computer Research and Development, 2024, 61(5): 1128-1142. DOI: 10.7544/issn1000-1239.202330801
    [4]Chen Huimin, Liu Zhiyuan, Sun Maosong. The Social Opportunities and Challenges in the Era of Large Language Models[J]. Journal of Computer Research and Development, 2024, 61(5): 1094-1103. DOI: 10.7544/issn1000-1239.202330700
    [5]Yang Yi, Li Ying, Chen Kai. Vulnerability Detection Methods Based on Natural Language Processing[J]. Journal of Computer Research and Development, 2022, 59(12): 2649-2666. DOI: 10.7544/issn1000-1239.20210627
    [6]Pan Xuan, Xu Sihan, Cai Xiangrui, Wen Yanlong, Yuan Xiaojie. Survey on Deep Learning Based Natural Language Interface to Database[J]. Journal of Computer Research and Development, 2021, 58(9): 1925-1950. DOI: 10.7544/issn1000-1239.2021.20200209
    [7]Zheng Haibin, Chen Jinyin, Zhang Yan, Zhang Xuhong, Ge Chunpeng, Liu Zhe, Ouyang Yike, Ji Shouling. Survey of Adversarial Attack, Defense and Robustness Analysis for Natural Language Processing[J]. Journal of Computer Research and Development, 2021, 58(8): 1727-1750. DOI: 10.7544/issn1000-1239.2021.20210304
    [8]Pan Xudong, Zhang Mi, Yan Yifan, Lu Yifan, Yang Min. Evaluating Privacy Risks of Deep Learning Based General-Purpose Language Models[J]. Journal of Computer Research and Development, 2021, 58(5): 1092-1105. DOI: 10.7544/issn1000-1239.2021.20200908
    [9]Bao Yang, Yang Zhibin, Yang Yongqiang, Xie Jian, Zhou Yong, Yue Tao, Huang Zhiqiu, Guo Peng. An Automated Approach to Generate SysML Models from Restricted Natural Language Requirements in Chinese[J]. Journal of Computer Research and Development, 2021, 58(4): 706-730. DOI: 10.7544/issn1000-1239.2021.20200757
    [10]Che Haiyan, Feng Tie, Zhang Jiachen, Chen Wei, and Li Dali. Automatic Knowledge Extraction from Chinese Natural Language Documents[J]. Journal of Computer Research and Development, 2013, 50(4): 834-842.
  • Cited by

    Periodical cited type(66)

    1. 袁良志,海佳丽,汪润,邓文萍,肖勇,常凯. 知识图谱驱动的中医药标准数字化探索与实践. 中医药导报. 2025(01): 225-230 .
    2. 范定容,王倩倩,沈奥,彭露. 从ChatGPT到Sora:人工智能在医学教育中的应用潜力与挑战. 中国医学教育技术. 2025(01): 33-40 .
    3. 刘园园,王银刚. ChatGPT影响大学生判断能力:双向机理与对策. 湖北成人教育学院学报. 2025(01): 29-34 .
    4. 魏昱,刘卫. 人工智能生成内容在服装设计中的应用现状. 毛纺科技. 2025(01): 134-142 .
    5. 李冰,鲜勇,雷刚,苏娟. ChatGPT架构下课程智能教学助手建设探讨. 教育教学论坛. 2025(03): 45-48 .
    6. 梁炜,许振宇. 大语言模型赋能舆情治理现代化:价值、风险与路径. 中国应急管理科学. 2025(01): 93-103 .
    7. 刘邦奇,聂小林,王士进,袁婷婷,朱洪军,赵子琪,朱广袤. 生成式人工智能与未来教育形态重塑:技术框架、能力特征及应用趋势. 电化教育研究. 2024(01): 13-20 .
    8. 秦涛,杜尚恒,常元元,王晨旭. ChatGPT的工作原理、关键技术及未来发展趋势. 西安交通大学学报. 2024(01): 1-12 .
    9. 张小朝. AIGC在商旅行业中的应用探索. 广东通信技术. 2024(01): 75-79 .
    10. 廉霄兴,宋勇,朱军,王淑玲,叶晓舟,欧阳晔. 基于双通道理论的通信认知增强技术研究. 电信科学. 2024(01): 123-135 .
    11. 杨永恒. 人工智能时代社会科学研究的“变”与“不变”. 人民论坛·学术前沿. 2024(04): 96-105 .
    12. 刘英祥,张琳. 生成式人工智能技术在海事管理工作中的应用探索. 航海. 2024(02): 62-64 .
    13. 吕静,何平,王永芬,冉朝霞,曹钦兴,古文帆,彭敏,田敏. ChatGPT在医学领域研究态势的文献计量学分析. 医学与哲学. 2024(07): 30-35 .
    14. 王益君,董韵美. 公众对人工智能的认知与情感态度——以ChatGPT为例. 知识管理论坛. 2024(01): 16-29 .
    15. 陈雷. ChatGPT在公安院校教育教学中的应用及影响. 太原城市职业技术学院学报. 2024(02): 85-88 .
    16. 尤冲,李彦兵. 基于ChatGPT大语言模型应用的公共体育服务智能化:指征、风险及其规制. 南京体育学院学报. 2024(02): 1-12 .
    17. 杨胜钦. 从ChatGPT看AI对电信网络诈骗犯罪治理的影响. 犯罪与改造研究. 2024(05): 26-33 .
    18. 王春英,姚亚妮,滕白莹. 生成式人工智能嵌入敏捷政府建设:影响、风险与应对. 北京行政学院学报. 2024(03): 73-83 .
    19. 王雯,李永智. 国际生成式人工智能教育应用与省思. 开放教育研究. 2024(03): 37-44 .
    20. 张智义. 体认语言学视阈下ChatGPT语言生成及性能研究. 外语研究. 2024(03): 20-25+43+112 .
    21. 余淑珍,单俊豪,闫寒冰. 情感计算赋能个性化教学:逻辑框架、问题解构与多元重塑. 现代远距离教育. 2024(02): 53-61 .
    22. 高尚. 大语言模型与中台:共融还是替代?. 科技与金融. 2024(05): 59-62 .
    23. 郭亚军,马慧芳,张鑫迪,冯思倩. ChatGPT赋能图书馆知识服务:原理、场景与进路. 图书馆建设. 2024(03): 60-68 .
    24. 高雪松,黄蕴华,王斌. 基于专利数据的生成式人工智能技术栈创新态势研究. 东北财经大学学报. 2024(04): 53-61 .
    25. 张渊. ChatGPT文本的生成机制与文本特性分析. 重庆文理学院学报(社会科学版). 2024(04): 105-114 .
    26. 罗仕鉴,于慧伶,易珮琦. 数智时代工业设计知识生产新范式. 机械设计. 2024(08): 6-10 .
    27. 徐炳文. 基于ChatGPT的人工智能交互技术工业物联网平台研究. 工业控制计算机. 2024(08): 132-134 .
    28. Deyi Li,Jialun Yin,Tianlei Zhang,Wei Han,Hong Bao. The Four Most Basic Elements In Machine Cognition. Data Intelligence. 2024(02): 297-319 .
    29. 黄语,刘海洋,常海军,杨远松. 基于ChatGPT工作模式的AI工具在BIM技术中的潜在应用与实现途径. 科技创新与应用. 2024(26): 181-184+188 .
    30. 李琳娜,丁楷,韩红旗,王力,李艾丹. 基于知识图谱的中文科技文献问答系统构建研究. 中国科技资源导刊. 2024(04): 51-62 .
    31. 裴炳森,李欣,蒋章涛,刘明帅. 基于大语言模型的公安专业小样本知识抽取方法研究. 计算机科学与探索. 2024(10): 2630-2642 .
    32. 李克寒,余丽媛,邵企能,蒋可,乌丹旦. 大语言模型在口腔住院医师规范化培训中的应用构想. 中国卫生产业. 2024(07): 155-158 .
    33. 钟厚涛. 生成式人工智能给翻译实践带来的机遇与挑战. 北京翻译. 2024(00): 238-250 .
    34. 张夏恒,马妍. AIGC在应急情报服务中的应用研究. 图书馆工作与研究. 2024(11): 60-67 .
    35. 崔金满,李冬梅,田萱,孟湘皓,杨宇,崔晓晖. 提示学习研究综述. 计算机工程与应用. 2024(23): 1-27 .
    36. 周代数,魏杉汀. 人工智能驱动的科学研究第五范式:演进、机制与影响. 中国科技论坛. 2024(12): 97-107 .
    37. 钱力,张智雄,伍大勇,常志军,于倩倩,胡懋地,刘熠. 科技文献大模型:方法、框架与应用. 中国图书馆学报. 2024(06): 45-58 .
    38. 潘崇佩,廖康启,孔勇发. 生成式人工智能背景下的近代物理实验教学改革. 实验室研究与探索. 2024(12): 117-122 .
    39. 李德毅,刘玉超,殷嘉伦. 认知机器如何创造. 中国基础科学. 2024(06): 1-11 .
    40. 李德毅,张天雷,韩威,海丹,鲍泓,高洪波. 认知机器的结构和激活. 智能系统学报. 2024(06): 1604-1613 .
    41. 蔡昌,庞思诚. ChatGPT的智能性及其在财税领域的应用. 商业会计. 2023(09): 41-46 .
    42. 于书娟,卢小雪,赵磊磊. 教育人工智能变革的基本逻辑与发展进路. 当代教育科学. 2023(05): 40-49 .
    43. 曹克亮. ChatGPT:意识形态家的机器学转向及后果. 统一战线学研究. 2023(04): 134-144 .
    44. 宋恺,屈蕾蕾,杨萌科. 生成式人工智能的治理策略研究. 信息通信技术与政策. 2023(07): 83-88 .
    45. 陈凌云,姚宽达,王茜,方安,李刚. ChatGPT:研究进展、模型创新及医学信息研究应用场景优化. 医学信息学杂志. 2023(07): 18-23+29 .
    46. 彭强,李羿卫. 自然用户界面在智能家居系统中的应用路径创新研究:生成式人工智能技术的调节作用. 包装工程. 2023(16): 454-463 .
    47. 杨军农,王少波. 类ChatGPT技术嵌入政务服务网的应用场景、风险隐患与实施建议. 信息与电脑(理论版). 2023(10): 183-186 .
    48. 政光景,吕鹏. 生成式人工智能与哲学社会科学新范式的涌现. 江海学刊. 2023(04): 132-142+256 .
    49. 吴梦妮. 社交媒体传播视域下玩具企业应用AI技术实施营销的实践路径. 玩具世界. 2023(04): 144-146 .
    50. 李德毅,殷嘉伦,张天雷,韩威,鲍泓. 机器认知四要素说. 中国基础科学. 2023(03): 1-10+22 .
    51. 王洁. ChatGPT对知识服务的五大变革. 图书馆. 2023(09): 10-16 .
    52. 刘乃嘉. 基于ChatGPT的矿山工程风险评估预警系统实现探讨. 企业科技与发展. 2023(08): 44-47 .
    53. 裴炳森,李欣,吴越. 基于ChatGPT的电信诈骗案件类型影响力评估. 计算机科学与探索. 2023(10): 2413-2425 .
    54. 张新新,丁靖佳. 生成式智能出版的技术原理与流程革新. 图书情报知识. 2023(05): 68-76 .
    55. 张新新,黄如花. 生成式智能出版的应用场景、风险挑战与调治路径. 图书情报知识. 2023(05): 77-86+27 .
    56. 陈靖. ChatGPT的类人想象与安全风险分析. 网络空间安全. 2023(04): 8-12 .
    57. 李佩芳,陈佳丽,宁宁,王立群,张涵旎. ChatGPT在医学领域的应用进展及思考. 华西医学. 2023(10): 1456-1460 .
    58. 朱敏锐,郜云帆,黄勇. 以新时代优良学风涵养新时代外语人才. 北京教育(高教). 2023(11): 35-37 .
    59. 丁红菊. 消解与重构:人工智能技术对新闻业的影响——基于对ChatGPT的研究. 运城学院学报. 2023(05): 57-62 .
    60. 李钥,淮盼盼,杨辉. ChatGPT在护理教育中的应用状况及优劣分析. 护理学杂志. 2023(21): 117-121 .
    61. 张绍龙. 基于ChatGPT的人工智能技术应用. 集成电路应用. 2023(11): 200-201 .
    62. 崔克克,孙冲,李辉,赵凌飞. 浅谈水泥企业数字化转型发展. 中国水泥. 2023(12): 28-33 .
    63. 单琳,王文娟,刘舒萌. ChatGPT在医学分子生物学教学中的应用. 基础医学教育. 2023(12): 1084-1086 .
    64. 李德毅,刘玉超,任璐. 人工智能看智慧. 科学与社会. 2023(04): 131-149 .
    65. 付翔,魏晓伟,张浩,徐宁. 数字安全角度下审视和剖析ChatGPT. 航空兵器. 2023(06): 117-122 .
    66. 黄婷,刘力凯. 基于大模型的数智化语言教学探索与应用. 连云港职业技术学院学报. 2023(04): 73-79 .

    Other cited types(0)

Catalog

    Article views (516) PDF downloads (252) Cited by(66)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return