Citation: | Lu Sidi, He Yuankai, Shi Weisong. Vehicle Computing: An Emerging Computing Paradigm for the Autonomous Driving Era[J]. Journal of Computer Research and Development, 2025, 62(1): 2-21. DOI: 10.7544/issn1000-1239.202440538 |
With rapid advancements in edge computing, sensing, AI, and communication technologies, vehicles are undergoing an unprecedented transformation. We introduce a new computing paradigm for the autonomous driving era—vehicle computing. In this paradigm, data and control layers are separated, creating an open computing platform that supports multi-party collaboration and data sharing, breaking away from the limitations of traditional, closed vehicle systems. This paradigm enables vehicles to transcend conventional transportation roles, evolving into versatile mobile computing platforms that support a wide range of advanced applications and third-party services. We define the core concepts of vehicle computing, analyze the revolutionary evolution of software and computing architectures within vehicles, and present promising application examples, as well as a novel business model enabled by this paradigm. The five core functionalities of vehicle computing, i.e., computation, communication, energy management, sensing, and data storage, and their related cutting-edge technologies are thoroughly explored. We conclude by discussing key technical challenges and promising opportunities within vehicle computing, aiming to inspire further academic and industry research in this innovative field.
[1] |
AECC. Distributed computing in an AECC system[EB/OL]. [2021-08-13] https://aecc.org/resources/publications/
|
[2] |
Allied Market Research. Connected car market size, share, growth & trends analysis report by technology, connectivity solution, service, end-use, and segment forecasts, 2020−2027[EB/OL]. [2024-05-15]. https://reports.valuates.com/market-reports/ALLI-Manu-3Z1/connected-car
|
[3] |
Lu Sidi, Shi Weisong. Vehicle as a mobile computing platform: Opportunities and challenges[J]. IEEE Network, 2024, 38(6): 493−500
|
[4] |
Makke O, Gusikhin O. Connected vehicle prognostics framework for dynamic systems[C]//Proc of the Third Int Scientific Conf “Intelligent Information Technologies for Industry”(IITI’18). Berlin: Springer, 2019: 3−15
|
[5] |
Trilla A, Dersin P, Cabre X. Estimating the uncertainty of brake pad prognostics for high-speed rail with a neural network feature ensemble[C]//Proc of Prognostics and Health Management Society. Durham, NC: PHM Society, 2018: 1−7
|
[6] |
Guo Hongyan, Shen Chen, Zhang Hui, et al. Simultaneous trajectory planning and tracking using an MPC method for cyber-physical systems: A case study of obstacle avoidance for an intelligent vehicle[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4273−4283 doi: 10.1109/TII.2018.2815531
|
[7] |
Chien S I J, Kuchipudi C M. Dynamic travel time prediction with real-time and historic data[J]. Journal of Transportation Engineering, 2003, 129(6): 608−616 doi: 10.1061/(ASCE)0733-947X(2003)129:6(608)
|
[8] |
Gunter G, Gloudemans D, Stern R E, et al. Are commercially implemented adaptive cruise control systems string stable?[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11): 6992−7003
|
[9] |
Lu Sidi, Yao Yongtao, Shi Weisong. CLONE: Collaborative learning on the edges[J]. IEEE Internet of Things Journal, 2020, 8(13): 10222−10236
|
[10] |
Luo Yichen, Xu Daoxuan, Zhou Gang, et al. Impact of raindrops on camera-based detection in software-defined vehicles[C]//Proc of IEEE Int Conf on Mobility, Operations, Services and Technologies (MOST). Piscataway, NJ: IEEE, 2024: 193–205
|
[11] |
Narote S P, Bhujbal P N, Narote A S, et al. A review of recent advances in lane detection and departure warning system[J]. Pattern Recognition, 2018, 73: 216−234
|
[12] |
Lee H, Kang M, Song J, et al. The detection of black ice accidents for preventative automated vehicles using convolutional neural networks[J]. Electronics, 2020, 9(12): 2178−2191 doi: 10.3390/electronics9122178
|
[13] |
Fan R, Ozgunalp U, Hosking B, et al. Pothole detection based on disparity transformation and road surface modeling[J]. IEEE Transactions on Image Processing, 2019, 29: 897−908
|
[14] |
Sumaiya, Jafarpourmarzouni R, Lu Sidi, et al. Enhancing real-time inference performance for time-critical software-defined vehicles[C]//Proc of IEEE Int Conf on Mobility, Operations, Services and Technologies (MOST). Piscataway, NJ: IEEE, 2024: 101–113
|
[15] |
Chen Junzhou, Lu Sidi. An advanced driving agent with the multimodal large language model for autonomous vehicles [C]//Proc of IEEE Int Conf on Mobility, Operations, Services and Technologies (MOST). Piscataway, NJ: IEEE, 2024: 1–11
|
[16] |
Goh C C, Kamarudin L M, Sudin S, et al. Cloud-based in-vehicle air quality monitoring system with GSM module[J]. Journal of Telecommunication, Electronic and Computer Engineering, 2018, 10(1-14): 77−81
|
[17] |
Lu Sidi, Ammar N, Ganlath A, et al. A comparison of end-to-end architectures for connected vehicles[C]//Proc of the Fifth Int Conf on Connected and Autonomous Driving (MetroCAD). Piscataway, NJ: IEEE, 2022: 72−80
|
[18] |
Bauer L. Smart vehicle architecture: A sustainable approach to building the next generation of vehicles[J]. APTIV White Paper, 2020
|
[19] |
Lu Sidi, Shi Weisong. Vehicle computing: Vision and challenges[J]. Journal of Information and Intelligence, 2023, 1(1): 23−35 doi: 10.1016/j.jiixd.2022.10.001
|
[20] |
Bodei C, De Vincenzi M, Matteucci I. From hardware-functional to software-defined vehicles and their security issues[C]//Proc of IEEE Int Conf on Industrial Informatics (INDIN). Piscataway, NJ: IEEE, 2023: 1−10
|
[21] |
Halder S, Ghosal A, Conti M. Secure over-the-air software updates in connected vehicles: A survey[J]. Computer Networks, 2020, 178: 107343
|
[22] |
Lu Sidi, Shi Weisong. Vehicle Computing: From Traditional Transportation to Computing on Wheels[M]. Cham, Switzerland: Springer, 2024
|
[23] |
Liu Liangkai, Zhang Xingzhou, Qiao Mu, et al. SafeShareRide: Edge-based attack detection in ridesharing services[C]//Proc of IEEE/ACM Symp on Edge Computing (SEC). Piscataway, NJ: IEEE, 2018: 17−29
|
[24] |
Lu Sidi, Shi Weisong. The emergence of vehicle computing[J]. IEEE Internet Computing, 2021, 25(3): 18−22 doi: 10.1109/MIC.2021.3066076
|
[25] |
ASCE. 2021 Report Card for America’s Infrastructure[EB/OL]. [2024-05-10]. https://infrastructurereportcard.org/cat-item/bridges/
|
[26] |
Miller T W, Dickson P R. On-line market research[J]. International Journal of Electronic Commerce, 2001, 5(3): 139−167 doi: 10.1080/10864415.2001.11044213
|
[27] |
Spencer M, Andreozzi M M. Real-time portability in software-defined systems[C]//Proc of Cyber-Physical Systems and Internet of Things Week Workshops. New York: ACM, 2023: 177−178
|
[28] |
AUTOSAR. AUTOSAR Website[EB/OL]. [2024-05-15]. https://www.autosar.org/
|
[29] |
Zhang Qingyang, Wang Yifan, Zhang Xingzhou, et al. OpenVDAP: An open vehicular data analytics platform for CAVs[C]//Proc of IEEE 38th Int Conf on Distributed Computing Systems (ICDCS). Piscataway, NJ: IEEE, 2018: 1310−1320
|
[30] |
Liu Liangkai, Lu Sidi, Zhong Ren, et al. Computing systems for autonomous driving: State of the art and challenges[J]. IEEE Internet of Things Journal, 2020, 8(8): 6469−6486
|
[31] |
Xavier M N. A new brain for self-driving, AI, and AR cars[EB/OL]. (2018-01-07)[2019-03-18]. https://www.slashgear.com/meet-nvidia-xavier-a-new-brain-for-self-driving-ai-and-ar-cars-07513987/
|
[32] |
Xilinx. Enabling next generation ADAS and AD systems[EB/OL]. [2024-05-17]. https://www.xilinx.com/products/silicon-devices/soc/xa-zynq-ultrascale-mpsoc.html
|
[33] |
Xilinx. Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit[EB/OL]. [2024-05-25]. https://www.xilinx.com/products/boards-and-kits/zcu104.html
|
[34] |
Texas Instruments. Texas instruments TDA[EB/OL]. [2024-06-14]. http://www.ti.com/processors/automotive-processors/tdax-adas-socs/overview.html
|
[35] |
MobileEye. The evolution of EyeQ: The system-on-chip for automotive applications[EB/OL]. [2024-06-14]. https://www.mobileye.com/our-technology/evolution-eyeq-chip/
|
[36] |
Nvidia. NVIDIA drive AGX systems[EB/OL]. [2024-05-20]. https://www.nvidia.com/en-us/self-driving-cars/drive-platform/hardware/
|
[37] |
Wind River Systems, Inc. VxWorks: Real-time operating system for the intelligent edge[EB/OL]. [2024-06-01]. https://www.windriver.com/products/vxworks/
|
[38] |
Sato H, Yakoh T. A real-time communication mechanism for RTLinux[C]//Proc of IEEE Int Conf on Industrial Electronics, Control and Instrumentation (IECON). Piscataway, NJ: IEEE, 2000: 2437−2442
|
[39] |
Nvidia. NVIDIA DRIVE - Software[EB/OL]. [2024-05-20]. https://developer.nvidia.com/drive/drive-software
|
[40] |
Quigley M, Conley K, Gerkey B, et al. ROS: An open-source robot operating system[C]//Proc of IEEE Int Conf on Robotics and Automation (ICRA) on Open Source Software. Piscataway, NJ: IEEE, 2009: 3(3.2): 5−10
|
[41] |
Foote T, Scott K. ROS Community Metrics Report[EB/OL]. [2023-11-23]. http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
|
[42] |
Teixeira R R, Maurell I P, Drews P L J. Security on ROS: Analyzing and exploiting vulnerabilities of ROS-based systems[C]//Proc of Latin American Robotics Symp (LARS) and Brazilian Symp on Robotics (BSR). Piscataway, NJ: IEEE, 2020: 1−6
|
[43] |
Open Robotics. Open Robotics: Home of ROS and Gazebo[EB/OL]. [2024-05-21]. https://www.openrobotics.org
|
[44] |
White R, Christensen H I, Caiazza G, et al. Procedurally provisioned access control for robotic systems[C]//Proc of IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS). Piscataway, NJ: IEEE, 2018: 1−9
|
[45] |
Benhamouda F, Lepoint T, Loss J, et al. On the (in) security of ROS[J]. Journal of Cryptology, 2022, 35(4): 25−49 doi: 10.1007/s00145-022-09436-0
|
[46] |
Autoware. Welcome to the Autoware Foundation[EB/OL]. [2023-05-21]. https://www.autoware.org/
|
[47] |
Baidu. Apollo Cyber[EB/OL]. [2024-05-14]. https://github.com/ApolloAuto/apollo/tree/master/cyber
|
[48] |
Kenney J B. Dedicated Short-Range Communications (DSRC) standards in the United States[J]. Proceedings of the IEEE, 2011, 99(7): 1162−1182 doi: 10.1109/JPROC.2011.2132790
|
[49] |
5G Automotive Association. V2X Technology Benchmark Testing[EB/OL]. [2024-01-31]. https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/fcc_usdot_cv2x_-_v2.14_w_video1.pdf
|
[50] |
Olaverri-Monreal C. Autonomous vehicles and smart mobility related technologies[J]. Infocommunications Journal, 2016, 8(2): 17−24
|
[51] |
Scott-Briggs A. HireGo – Peer to peer car hire and car sharing platform[EB/OL]. [2024-05-17]. https://techbullion.com/hirego-peer-to-peer-car-hire-car-sharing-platform/
|
[52] |
Gresham T. Honda, GM-led Group Develops Global Blockchain Standard for EV Grid Integration[EB/OL]. [2024-06-01]. https://www.utilitydive.com/news/honda-gm-led-group-develops-global-blockchain-standard-for-ev-grid-integra/587263/
|
[53] |
邵雯娟,沈庆国. 软件定义的D2D和V2X通信研究综述[J]. 通信学报,2019,40(4):179−194 doi: 10.11959/j.issn.1000-436x.2019075
Shao Wenjuan, Shen Qingguo. Survey of software defined D2D and V2X communication[J]. Journal on Communications, 2019, 40(4): 179−194 (in Chinese) doi: 10.11959/j.issn.1000-436x.2019075
|
[54] |
张海波,王子心,贺晓帆. SDN和MEC架构下V2X卸载与资源分配[J]. 通信学报,2020,41(1):114−124 doi: 10.11959/j.issn.1000-436x.2020023
Zhang Haibo, Wang Zixin, He Xiaofan. V2X offloading and resource allocation under SDN and MEC architecture[J]. Journal on Communications, 2020, 41(1): 114−124 (in Chinese) doi: 10.11959/j.issn.1000-436x.2020023
|
[55] |
Wang Lin, Zhang Qingyang, Li Youhuizi, et al. MobileEdge: Enhancing on-board vehicle computing units using mobile edges for CAVs[C]//Proc of IEEE 25th Int Conf on Parallel and Distributed Systems (ICPADS). Piscataway, NJ: IEEE, 2019: 470−479
|
[56] |
陈骁,黄牧鸿,田一凡,等. 基于分片区块链的车联网数据共享方案[J]. 计算机研究与发展,2024,61(9):2246−2260 doi: 10.7544/issn1000-1239.202330899
Chen Xiao, Huang Muhong, Tian Yifan, et al. Internet of vehicles data sharing scheme via blockchain sharding[J]. Journal of Computer Research and Development, 2024, 61(9): 2246−2260 (in Chinese) doi: 10.7544/issn1000-1239.202330899
|
[57] |
刘雪娇,曹天聪,夏莹杰. 区块链架构下高效的车联网跨域数据安全共享研究[J]. 通信学报,2023,44(3):186−197 doi: 10.11959/j.issn.1000-436x.2023031
Liu Xuejiao, Cao Tiancong, Xia Yingjie. Research on efficient and secure cross-domain data sharing of IoV under blockchain architecture[J]. Journal on Communications, 2023, 44(3): 186−197 (in Chinese) doi: 10.11959/j.issn.1000-436x.2023031
|
[58] |
Liu Shaoshan, Li Liyun, Tang Jie, et al. Creating Autonomous Vehicle Systems[M]. Berlin: Springer, 2020
|
[59] |
Garcia-Garcia A, Orts-Escolano S, Oprea S, et al. A review on deep learning techniques applied to semantic segmentation[J]. arXiv preprint, arXiv: 1704.06857, 2017
|
[60] |
Tampuu A, Matiisen T, Semikin M, et al. A survey of end-to-end driving: Architectures and training methods[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 33(4): 1364−1384
|
[61] |
Yu F, Chen Haofeng, Wang Xin, et al. BDD100K: A diverse driving dataset for heterogeneous multitask learning[C]//Proc of IEEE/CVF Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 2636−2645
|
[62] |
Binas J, Neil D, Liu S C, et al. DDD17: End-to-end DAVIS driving dataset[J]. arXiv preprint, arXiv: 1711.01458, 2017
|
[63] |
Skalski P. Makesense. ai[EB/OL]. [2024-06-10]. https://www.makesense.ai/
|
[64] |
HumanSignal. LabelImg[EB/OL]. [2024-05-21]. https://github.com/tzutalin/labelImg
|
[65] |
Dutta A. VGG image annotator[EB/OL]. [2024-02-28]. https://gitlab.com/vgg/via
|
[66] |
MIT Computer Science and Artificial Intelligence Laboratory. LabelMe[EB/OL]. [2024-04-12]. http://labelme.csail.mit.edu/Release3.0/
|
[67] |
Scalabel. Scalabel: A versatile web-based visual data annotation tool[EB/OL]. [2024-06-03]. https://github.com/scalabel
|
[68] |
Kawamura R. RectLabel: An offline image annotation tool for object detection and segmentation[EB/OL]. [2024-06-12]. https://rectlabel.com/
|
[69] |
Sabaliauskaite G, Liew L S, Cui J. Integrating autonomous vehicle safety and security analysis using STPA method and the six-step model[J]. International Journal on Advances in Security, 2018, 11(1&2): 160−169
|
[70] |
Toderici G, Vincent D, Johnston N, et al. Full resolution image compression with recurrent neural networks[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2017: 5306−5314
|
[71] |
Zhou Yangming, Wang Chengyou, Zhou Xiao. DCT-based color image compression algorithm using an efficient lossless encoder[C]//Proc of the 14th IEEE Int Conf on Signal Processing (ICSP). Piscataway, NJ: IEEE, 2018: 450−454
|
[72] |
Di Sheng, Cappello F. Fast error-bounded lossy HPC data compression with SZ[C]//Proc of IEEE Int Parallel and Distributed Processing Symp (IPDPS). Piscataway, NJ: IEEE, 2016: 730−739
|
[73] |
Ratnasamy S, Karp B, Yin Li, et al. GHT: A geographic Hash table for data-centric storage[C]//Proc of the 1st ACM Int Workshop on Wireless Sensor Networks and Applications (WSNA). New York: ACM, 2002: 78−87
|
[74] |
Zeng Wenying, Zhao Yuelong, Ou Kairi, et al. Research on cloud storage architecture and key technologies[C]//Proc of the 2nd Int Conf on Interaction Sciences: Information Technology, Culture and Human (ICIS). Piscataway, NJ: IEEE, 2009: 1044−1048
|
[75] |
Gibson G A, Nagle D F, Amiri K, et al. A cost-effective, high-bandwidth storage architecture[J]. ACM SIGOPS Operating Systems Review, 1998, 32(5): 92−103 doi: 10.1145/384265.291029
|
[76] |
Huston L, Sukthankar R, Wickremesinghe R, et al. Diamond: A storage architecture for early discard in interactive search[C]//Proc of the 3rd USENIX Conf on File and Storage Technologies (FAST). Berkeley, CA: USENIX, 2004, 4: 73−86
|
[77] |
Wang Ruijun, Liu Liangkai, Shi Weisong. HydraSpace: Computational data storage for autonomous vehicles[C]//Proc of IEEE 6th Int Conf on Collaboration and Internet Computing (CIC). Piscataway, NJ: IEEE, 2020: 70−77
|
[78] |
Zhang Qingyang, Zhong Hong, Cui Jie, et al. AC4AV: A flexible and dynamic access control framework for connected and autonomous vehicles[J]. IEEE Internet of Things Journal, 2020, 8(3): 1946−1958
|
[79] |
Wu Baofu, Zhong Ren, Wang Yuxin, et al. VPI: Vehicle programming interface for vehicle computing[J]. Journal of Computer Science and Technology, 2024, 39(1): 22−44 doi: 10.1007/s11390-024-4035-2
|
[80] |
Teraki. Autonomous cars’ big problem: The energy consumption of edge processing reduces a car’s mileage with up to 30%[EB/OL]. [2020-07-15]. https://medium.com/@teraki/energy-consumption-required-by-edge-computing-reduces-a-autonomous-cars-mileage-with-up-to-30-46b6764ea1b7
|
[81] |
Bryce R. How Google powers its monopoly with enough electricity for entire countries (2020)[EB/OL]. [2023-11-25]. https://www. forbes. com/sites/robertbryce/2020/10/21/googles-dominance-is-fueled-by-zambia-size-amounts-of-electricity
|
[82] |
Kumar M, Zhang Xingzhou, Liu Liangkai, et al. Energy-efficient machine learning on the edges[C]//Proc of IEEE Int Parallel and Distributed Processing Symp Workshops (IPDPSW). Piscataway, NJ: IEEE, 2020: 912−921
|
[83] |
Han Song, Kang Junlong, Mao Huizi, et al. ESE: Efficient speech recognition engine with sparse LSTM on FPGA[C]//Proc of ACM/SIGDA Int Symp on Field-Programmable Gate Arrays (FPGA). New York: ACM, 2017: 75−84
|
[84] |
Parsons G R, Hidrue M K, Kempton W, et al. Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms[J]. Energy Economics, 2014, 42: 313−324
|
[85] |
Kempton W, Tomić J. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue[J]. Journal of Power Sources, 2005, 144(1): 268−279 doi: 10.1016/j.jpowsour.2004.12.025
|
[86] |
Kato S, Takeuchi E, Ishiguro Y, et al. An open approach to autonomous vehicles[J]. IEEE Micro, 2015, 35(6): 60−68 doi: 10.1109/MM.2015.133
|
[87] |
LeVine S. What it really costs to turn a car into a self-driving vehicle[EB/OL]. [2024-05-12]. https://qz.com/924212/what-it-really-costs-to-turn-a-car-into-aself-driving-vehicle
|
[88] |
Orrick A, McDermott M, Barnett D M, et al. Failure detection in an autonomous underwater vehicle[C]//Proc of IEEE Symp on Autonomous Underwater Vehicle Technology (AUV). Piscataway, NJ: IEEE, 1994: 377−382
|
[89] |
Zeng Kexiong, Liu Shinan, Shu Yuanchao, et al. All your GPS are belong to us: Towards stealthy manipulation of road navigation systems[C]//Proc of the 27th USENIX Security Symp (USENIX Security). Berkeley, CA: USENIX, 2018: 1527−1544
|
[90] |
Ruch C, Hörl S, Frazzoli E. AMoDeus, a simulation-based testbed for autonomous mobility-on-demand systems[C]//Proc of the 21st Int Conf on Intelligent Transportation Systems (ITSC). Piscataway, NJ: IEEE, 2018: 3639−3644
|
[91] |
Dosovitskiy A, Ros G, Codevilla F, et al. CARLA: An open urban driving simulator[C]//Proc of the 1st Annual Conf on Robot Learning (CoRL). Cambridge, MA: PMLR, 2017: 1−16
|
[92] |
Krajzewicz D, Hertkorn G, Rössel C, et al. SUMO (Simulation of Urban MObility) - an open-source traffic simulation[C]//Proc of the 4th Middle East Symp on Simulation and Modelling (MESM). San Diego, CA: SCS, 2002: 183−187
|
[93] |
Tian Zhaofeng, Shi Weisong. Design and implement an enhanced simulator for autonomous delivery robot[C]//Proc of the Fifth Int Conf on Connected and Autonomous Driving (MetroCAD). Piscataway, NJ: IEEE, 2022: 21−29
|
[94] |
Vedder B, Vinter J, Jonsson M. A low‐cost model vehicle testbed with accurate positioning for autonomous driving[J]. Journal of Robotics, 2018, 2018(1): 4907536
|
[95] |
Pickem D, Glotfelter P, Wang Li, et al. The Robotarium: A remotely accessible swarm robotics research testbed[C]//Proc of IEEE Int Conf on Robotics and Automation (ICRA). Piscataway, NJ: IEEE, 2017: 1699−1706
|
[96] |
Tian Zhaofeng, He Yuankai, Tian Boyang, et al. ICAT: An indoor connected and autonomous testbed for vehicle computing[C]//Proc of IEEE Int Conf on Mobility, Operations, Services and Technologies (MOST). Piscataway, NJ: IEEE, 2024: 242−250
|
[97] |
Pan Xingang, Shi Jianping, Luo Ping, et al. Spatial as deep: Spatial CNN for traffic scene understanding[C]//Proc of AAAI Conf on Artificial Intelligence (AAAI). Palo Alto, CA: AAAI, 2018, 32(1): 7276−7283
|
[98] |
Hommes Q V E. Review and assessment of the ISO 26262 draft road vehicle-functional safety[R]. SAE Technical Paper, 2012
|
[99] |
Rao Qing, Frtunikj J. Deep learning for self-driving cars: Chances and challenges[C]//Proc of the 1st Int Workshop on Software Engineering for AI in Autonomous Systems. New York: ACM, 2018: 35−38
|
[100] |
Luo Ping, Zhu Zhenyao, Liu Ziwei, et al. Face model compression by distilling knowledge from neurons[C]//Proc of the AAAI Conf on Artificial Intelligence (AAAI). Palo Alto, CA: AAAI, 2016, 30(1): 3560−3566
|
[101] |
Howard A G, Zhu Menglong, Chen Bo, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint, arXiv: 1704.04861, 2017
|
[102] |
Koopman P, Wagner M. Challenges in autonomous vehicle testing and validation[J]. SAE International Journal of Transportation Safety, 2016, 4(1): 15−24 doi: 10.4271/2016-01-0128
|
[103] |
Kato S, Tokunaga S, Maruyama Y, et al. Autoware on board: Enabling autonomous vehicles with embedded systems[C]//Proc of ACM/IEEE 9th Int Conf on Cyber-Physical Systems (ICCPS). Piscataway, NJ: IEEE, 2018: 287−296
|
[104] |
魏洪乾,时培成,张幽彤. 汽车信息安全:面向总线网络的伪造攻击检测技术[J]. 机械工程学报,2024,60(10):476−486
Wei Hongqian, Shi Peicheng, Zhang Youtong. Automotive cyber-security: Detection technique of masquerade attacks for the bus network[J]. Journal of Mechanical Engineering, 2024, 60(10): 476−486 (in Chinese)
|
[105] |
Sedgwick David. When driverless cars call for backup[EB/OL]. [2024-05-24]. https://www.autonews.com/article/20170218/OEM10/302209969/when-driverless-cars-call-for-backup
|
[106] |
Luft Alex. The Chevrolet Sonic’s Days are numbered[EB/OL]. [2024-05-22]. https://gmauthority.com/blog/2020/07/the-chevrolet-sonics-days-are-numbered/
|
[107] |
Wang Yifan, Liu Liangkai, Zhang Xingzhou, et al. HydraOne: An indoor experimental research and education platform for CAVs[C]//Proc of the 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge). Berkeley, CA: USENIX, 2019: 1−7
|
[108] |
VentureBeat. PerceptIn’s self-driving vehicles go on sale in November for $40, 000[EB/OL]. [2021-10-04]. https://venturebeat.com/2018/09/12/perceptins-self-driving-vehicles-go-on-sale-in-november-for-40000/
|
[109] |
Sumaiya, Jafarpourmarzouni R, Luo Yichen, et al. Towards real-time and efficient perception workflows in software-defined vehicles[J]. IEEE Internet of Things Journal, 2024: 1–18. DOI: 10.1109/JIOT.2024.3492801
|
[110] |
邬江兴. 智能网联汽车内生安全问题与对策[J]. 重庆邮电大学学报(自然科学版),2023,35(3):383−390 doi: 10.3979/j.issn.1673-825X.202303290088
Wu Jiangxing. Endogenous security problems and countermeasures of intelligent connected vehicle[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2023, 35(3): 383−390 (in Chinese) doi: 10.3979/j.issn.1673-825X.202303290088
|
[111] |
Sam A. Automotive over-the-air updates: A cost consideration guide[EB/OL]. [2022-08-19]. https://www.auroralabs.com/wp-content/uploads/2021/05/OTA_Update_Cost_Consideration_Guide_Apr2021.pdf
|
[112] |
Lida Tabibian. Is data transmission the new fuel? (online)[EB/OL]. [2024-05-18]. https://www.auroralabs.com/is-data-transmission-the-new-fuel/
|
[113] |
施巍松,张星洲,王一帆,等. 边缘计算:现状与展望[J]. 计算机研究与发展,2019,56(1):69−89 doi: 10.7544/issn1000-1239.2019.20180760
Shi Weisong, Zhang Xingzhou, Wang Yifan, et al. Edge computing: State-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69−89 (in Chinese) doi: 10.7544/issn1000-1239.2019.20180760
|
[114] |
Gorkem Y. Edge computing: Operator strategies, use cases and implementation[EB/OL]. [2022-09-12]. https://www.cisco.com/c/dam/en/us/solutions/service-provider/edge-computing/pdf/white-papersp-analysys-mason-research.pdf
|
[115] |
Ren Kui, Wang Qian, Wang Cong, et al. The security of autonomous driving: Threats, defenses, and future directions[J]. Proceedings of the IEEE, 2019, 108(2): 357−372
|
[116] |
Kamkar S. Drive it like you hacked it: New attacks and tools to wirelessly steal cars[J]. DEF CON, 2015, 23: 10
|
[117] |
Komkov S, Petiushko A. AdvHat: Real-world adversarial attack on ArcFace face ID system[C]//Proc of the 25th Int Conf on Pattern Recognition (ICPR). Piscataway, NJ: IEEE, 2021: 819−826
|
[118] |
Bernstein D J, Lange T. Post-quantum cryptography[J]. Nature, 2017, 549(7671): 188−194
|
[119] |
Ning Zhenyu, Zhang Fengwei, Shi Weisong, et al. Position paper: Challenges towards securing hardware-assisted execution environments[C]//Proc of Hardware and Architectural Support for Security and Privacy (HASP) Workshop. New York: ACM, 2017: 1−8
|
[120] |
Pala Z, Inanc N. Smart parking applications using RFID technology[C]//Proc of the 1st Annual RFID Eurasia Conf. Piscataway, NJ: IEEE, 2007: 1−3
|
[121] |
Al-Dweik A, Muresan R, Mayhew M, et al. IoT-based multifunctional scalable real-time enhanced road side unit for intelligent transportation systems[C]//Proc of IEEE 30th Canadian Conf on Electrical and Computer Engineering (CCECE). Piscataway, NJ: IEEE, 2017: 1−6
|
[122] |
Lin Li, Liao Xiaofei, Jin Hai, et al. Computation offloading toward edge computing[J]. Proceedings of the IEEE, 2019, 107(8): 1584−1607 doi: 10.1109/JPROC.2019.2922285
|
[123] |
Dong Zheng, Shi Weisong, Tong Guangmo, et al. Collaborative autonomous driving: Vision and challenges[C]//Proc of 3rd IEEE Int Conf on Connected and Autonomous Driving (MetroCAD). Piscataway, NJ: IEEE, 2020: 17−26
|
[124] |
Lu Sidi, Zhong Ren, Shi Weisong. Teleoperation technologies for enhancing connected and autonomous vehicles[C]//Proc of IEEE 19th Int Conf on Mobile Ad Hoc and Smart Systems (MASS). Piscataway, NJ: IEEE, 2022: 435−443
|
[125] |
Hubmann C, Becker M, Althoff D, et al. Decision making for autonomous driving considering interaction and uncertain prediction of surrounding vehicles[C]//Proc of IEEE Intelligent Vehicles Symp (IV). Piscataway, NJ: IEEE, 2017: 1671−1678
|
1. |
袁辉. 新质生产力理论指导下支付中心信息系统建设思路. 互联网周刊. 2025(05): 42-45 .
![]() | |
2. |
李文秀. 人工智能助力高校图书馆阅读推广的路径探索. 科技视界. 2024(33): 76-80 .
![]() |