• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Attention-enhanced Semantic Fusion Knowledge Graph Representation Learning Framework[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440669
Citation: Attention-enhanced Semantic Fusion Knowledge Graph Representation Learning Framework[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440669

Attention-enhanced Semantic Fusion Knowledge Graph Representation Learning Framework

Funds: This work was supported by the National Natural Science Foundation of China (62472311) and the Key Research and Development Program of Ningxia Hui Autonomous Region (2023BEG02067).
More Information
  • Received Date: August 12, 2024
  • Revised Date: November 07, 2024
  • Available Online: December 26, 2024
  • Knowledge graphs often face the challenge of incompleteness, which can be alleviated by completing missing information through link prediction tasks. However, most knowledge graph completion methods overly focus on extracting embedding features without sufficiently considering the complex semantics contained in the predicted node neighborhood information, global feature information, and directional feature information, making it difficult to accurately predict the missing information. This paper proposes a general representation learning semantic enhancement framework, ASFR, which utilizes an attention mechanism to extract local association information of the knowledge graph and structural features of the knowledge graph, and enhances existing knowledge graph representation learning models by incorporating positional information. By embedding these three types of additional knowledge graph information into the entity vectors of the knowledge graph, the quality of the knowledge graph representation vectors is improved. Comparative experiments are conducted using five different categories of classical methods, and the results indicate that this framework can effectively enhance the predictive capability of models, achieving an improvement of 6.89% on three public datasets.
  • Related Articles

    [1]He Peng, Zhou Gang, Chen Jing, Zhang Mengli, Ning Yuanlong. Type-Enhanced Temporal Knowledge Graph Representation Learning Model[J]. Journal of Computer Research and Development, 2023, 60(4): 916-929. DOI: 10.7544/issn1000-1239.202111246
    [2]Hu Xuyang, Wang Zhizheng, Sun Yuanyuan, Xu Bo, Lin Hongfei. Knowledge Graph Representation Method Combined with Semantic Parsing[J]. Journal of Computer Research and Development, 2022, 59(12): 2878-2888. DOI: 10.7544/issn1000-1239.20210849
    [3]Ning Yuanlong, Zhou Gang, Lu Jicang, Yang Dawei, Zhang Tian. A Representation Learning Method of Knowledge Graph Integrating Relation Path and Entity Description Information[J]. Journal of Computer Research and Development, 2022, 59(9): 1966-1979. DOI: 10.7544/issn1000-1239.20210651
    [4]Ma Ang, Yu Yanhua, Yang Shengli, Shi Chuan, Li Jie, Cai Xiuxiu. Survey of Knowledge Graph Based on Reinforcement Learning[J]. Journal of Computer Research and Development, 2022, 59(8): 1694-1722. DOI: 10.7544/issn1000-1239.20211264
    [5]Yao Siyu, Zhao Tianzhe, Wang Ruijie, Liu Jun. Rule-Guided Joint Embedding Learning of Knowledge Graphs[J]. Journal of Computer Research and Development, 2020, 57(12): 2514-2522. DOI: 10.7544/issn1000-1239.2020.20200741
    [6]Wang Meng, Wang Jingting, Jiang Yinlin, Qi Guilin. Hybrid Human-Machine Active Search over Knowledge Graph[J]. Journal of Computer Research and Development, 2020, 57(12): 2501-2513. DOI: 10.7544/issn1000-1239.2020.20200750
    [7]Yang Xiaohui, Wan Rui, Zhang Haibin, Zeng Yifu, Liu Qiao. Semantical Symbol Mapping Embedding Learning Algorithm for Knowledge Graph[J]. Journal of Computer Research and Development, 2018, 55(8): 1773-1784. DOI: 10.7544/issn1000-1239.2018.20180248
    [8]Fang Yang, Zhao Xiang, Tan Zhen, Yang Shiyu, Xiao Weidong. A Revised Translation-Based Method for Knowledge Graph Representation[J]. Journal of Computer Research and Development, 2018, 55(1): 139-150. DOI: 10.7544/issn1000-1239.2018.20160723
    [9]Chen Dehua, Yin Suna, Le Jiajin, Wang Mei, Pan Qiao, Zhu Lifeng. A Link Prediction Model for Clinical Temporal Knowledge Graph[J]. Journal of Computer Research and Development, 2017, 54(12): 2687-2697. DOI: 10.7544/issn1000-1239.2017.20170640
    [10]Du Zhijuan, Zhang Yi, Meng Xiaofeng, Wang Qiuyue. EAE: Enzyme Knowledge Graph Adaptive Embedding[J]. Journal of Computer Research and Development, 2017, 54(12): 2674-2686. DOI: 10.7544/issn1000-1239.2017.20170638
  • Cited by

    Periodical cited type(6)

    1. 从传锋. 云计算下去中心化双重差分隐私数据保护算法. 吉林大学学报(信息科学版). 2024(01): 14-19 .
    2. 李兴,吴天宇,马光明. 基于全同态加密的电力运行数据隐私保护方法. 长江信息通信. 2024(06): 140-142 .
    3. 王建国,高友江. 人工智能广告的负面效应:基于顾客旅程的理论视角. 江南大学学报(人文社会科学版). 2024(04): 51-64 .
    4. 王芳. 基于Python爬虫技术的互联网数据抓取方法设计. 信息与电脑(理论版). 2023(07): 41-43 .
    5. 马召贵. 基于改进KNN的不均衡信息文本分类算法. 信息与电脑(理论版). 2023(12): 85-87 .
    6. 胡建平,严永康. 半监督学习算法下数字化信息归并分类仿真. 计算机仿真. 2023(12): 502-505+562 .

    Other cited types(8)

Catalog

    Article views (84) PDF downloads (36) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return