• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Kaiyun, Kong Siqi, Fu Yunsheng, Pan Zeyou, Ma Weidong, Zhao Qiang. Two Longest Common Substring Algorithms Based on Bi-Directional Comparison[J]. Journal of Computer Research and Development, 2013, 50(11): 2444-2454.
Citation: Wang Kaiyun, Kong Siqi, Fu Yunsheng, Pan Zeyou, Ma Weidong, Zhao Qiang. Two Longest Common Substring Algorithms Based on Bi-Directional Comparison[J]. Journal of Computer Research and Development, 2013, 50(11): 2444-2454.

Two Longest Common Substring Algorithms Based on Bi-Directional Comparison

More Information
  • Published Date: November 14, 2013
  • Finding the longest common substring (LCSstr) for two given strings is an important problem in string analysis. It can be used in many applications such as approximate string matching, biological sequences analysis, plagiarism detection and computer virus signature detection. There are two algorithms to solve the longest common substring problem: Dynamic programming (LCSstrDP) and the suffix array (LCSstrSA). LCSstrDP solves the LCSstr problem by calculating the longest common suffix of the prefix (comparing from right to left). Its code is simple, but of low efficientcy LCSstrSA calculates the longest common prefix of the suffix (comparing from left to right). LCSstrSA’s time complexity is linear, though it is more complex. In this paper, we propose two LCSstr algorithms based on bi-directional comparison, named LCSstrSeL and LCSstrSCeL. LCSstrSeL skips the existing length of LCSstr with simple code and significantly improved efficiency, compared with LCSstrDP. On the basis of LCSstrSeL, LCSstrSCeL adds several mechanisms, such as character and continuous same value segment spanning. The test results show that not only the memory overhead of the algorithm is lower than that of LCSstrSA, but also the average efficiency is higher for small and medium strings. In some case the computation efficiency can be sublinear.
  • Related Articles

    [1]Hu Jun, Chen Yan, Zhang Qinghua, Wang Guoyin. Optimal Scale Selection for Generalized Multi-Scale Set-Valued Decision Systems[J]. Journal of Computer Research and Development, 2022, 59(9): 2027-2038. DOI: 10.7544/issn1000-1239.20210196
    [2]Wang Nian, Peng Zhenghong, Cui Li. EasiFFRA: A Fast Feature Reduction Algorithm Based on Neighborhood Rough Set[J]. Journal of Computer Research and Development, 2019, 56(12): 2578-2588. DOI: 10.7544/issn1000-1239.2019.20180541
    [3]Xie Qin, Zhang Qinghua, Wang Guoyin. An Adaptive Three-way Spam Filter with Similarity Measure[J]. Journal of Computer Research and Development, 2019, 56(11): 2410-2423. DOI: 10.7544/issn1000-1239.2019.20180793
    [4]Wu Weizhi, Yang Li, Tan Anhui, Xu Youhong. Granularity Selections in Generalized Incomplete Multi-Granular Labeled Decision Systems[J]. Journal of Computer Research and Development, 2018, 55(6): 1263-1272. DOI: 10.7544/issn1000-1239.2018.20170233
    [5]Yao Sheng, Xu Feng, Zhao Peng, Ji Xia. Intuitionistic Fuzzy Entropy Feature Selection Algorithm Based on Adaptive Neighborhood Space Rough Set Model[J]. Journal of Computer Research and Development, 2018, 55(4): 802-814. DOI: 10.7544/issn1000-1239.2018.20160919
    [6]Fu Zhiyao, Gao Ling, Sun Qian, Li Yang, Gao Ni. Evaluation of Vulnerability Severity Based on Rough Sets and Attributes Reduction[J]. Journal of Computer Research and Development, 2016, 53(5): 1009-1017. DOI: 10.7544/issn1000-1239.2016.20150065
    [7]Duan Jie, Hu Qinghua, Zhang Lingjun, Qian Yuhua, Li Deyu. Feature Selection for Multi-Label Classification Based on Neighborhood Rough Sets[J]. Journal of Computer Research and Development, 2015, 52(1): 56-65. DOI: 10.7544/issn1000-1239.2015.20140544
    [8]Hu Xiaojian, Yang Shanlin, Hu Xiaoxuan, Fang Fang. Optimal Decomposition of Decision Table Systems Based on Bayesian Networks[J]. Journal of Computer Research and Development, 2007, 44(4): 667-673.
    [9]Wei Lai, Miao Duoqian, Xu Feifei, and Xia Fuchun. Research on a Covering Rough Fuzzy Set Model[J]. Journal of Computer Research and Development, 2006, 43(10): 1719-1723.
    [10]Yi Gaoxiang and Hu Heping. A Web Search Result Clustering Based on Tolerance Rough Set[J]. Journal of Computer Research and Development, 2006, 43(2): 275-280.

Catalog

    Article views (775) PDF downloads (670) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return