• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liao Shizhong, Wang Mei, Zhao Zhihui. Regularization Path Algorithm of SVM via Positive Definite Matrix[J]. Journal of Computer Research and Development, 2013, 50(11): 2253-2261.
Citation: Liao Shizhong, Wang Mei, Zhao Zhihui. Regularization Path Algorithm of SVM via Positive Definite Matrix[J]. Journal of Computer Research and Development, 2013, 50(11): 2253-2261.

Regularization Path Algorithm of SVM via Positive Definite Matrix

More Information
  • Published Date: November 14, 2013
  • The regularization path algorithm is an efficient method for numerical solution to the support vector machine (SVM) classification problem, which can fit the entire path of SVM solutions for every value of the regularization parameter, with essentially the same computational cost as fitting one SVM model. Existing SVM regularization path algorithms can neither deal with the datasets having duplicate data points, nearly duplicate points, or points that are linearly dependent efficiently, nor have efficient numerical solution. To address these issues, an improved regularization path algorithm via positive definite matrix positive definite SVM path (PDSVMP) is proposed in this paper, which provides the accurate path of SVM solutions. The coefficient matrix of the system of iteration equations is transformed into a positive definite matrix, then the Lagrange multiplier increment vector is computed by Cholesky decomposition, and the increment of regularization parameter is derived according to the changes of the active set, which is used to compute the regularization parameter on each inflection point. Such treatment is able to guarantee the theoretical correctness and numerical stability, and reduce the computational complexity. Experimental results on instance dataset and benchmark datasets show that the PDSVMP algorithm can effectively and efficiently handle datasets having duplicate data points, nearly duplicate points, or points that are linearly dependent.
  • Related Articles

    [1]Liu Lin, Tang Lin, Tang Mingjing, Zhou Wei. The Framework of Protein Function Prediction Based on Boolean Matrix Decomposition[J]. Journal of Computer Research and Development, 2019, 56(5): 1020-1033. DOI: 10.7544/issn1000-1239.2019.20180274
    [2]Zhang Cheng, Wang Dong, Shen Chuan, Cheng Hong, Chen Lan, Wei Sui. Separable Compressive Imaging Method Based on Singular Value Decomposition[J]. Journal of Computer Research and Development, 2016, 53(12): 2816-2823. DOI: 10.7544/issn1000-1239.2016.20150414
    [3]Chen Yao, Zhao Yonghua, Zhao Wei, Zhao Lian. GPU-Accelerated Incomplete Cholesky Factorization Preconditioned Conjugate Gradient Method[J]. Journal of Computer Research and Development, 2015, 52(4): 843-850. DOI: 10.7544/issn1000-1239.2015.20131919
    [4]Liu Ye, Zhu Weiheng, Pan Yan, Yin Jian. Multiple Sources Fusion for Link Prediction via Low-Rank and Sparse Matrix Decomposition[J]. Journal of Computer Research and Development, 2015, 52(2): 423-436. DOI: 10.7544/issn1000-1239.2015.20140221
    [5]Ding Lizhong and Liao Shizhong. KMA-α:A Kernel Matrix Approximation Algorithm for Support Vector Machines[J]. Journal of Computer Research and Development, 2012, 49(4): 746-753.
    [6]Zhang Jianhua, Zeng Jianchao. Estimation of Distribution Algorithm Based on Sequential Importance Sampling Particle Filters and Cholesky Decomposition[J]. Journal of Computer Research and Development, 2010, 47(11): 1978-1985.
    [7]Zhao Feng, Huang Qingming, Gao Wen. An Image Matching Algorithm Based on Singular Value Decomposition[J]. Journal of Computer Research and Development, 2010, 47(1): 23-32.
    [8]Liu Yubao, Huang Zhilan, Ada Wai Chee Fu, Yin Jian. A Data Privacy Preservation Method Based on Lossy Decomposition[J]. Journal of Computer Research and Development, 2009, 46(7): 1217-1225.
    [9]Zhao Yonghua, Chi Xuebin, Cheng Qiang. Efficient Parallel Blocked Algorithms for Generalized Hermitian Eigenproblem[J]. Journal of Computer Research and Development, 2007, 44(10): 1724-1732.
    [10]Zhang Weimin, Zhu Xiaoqian, and Zhao Jun. Implementation of Phase Domain Decomposition Parallel Algorithm of Three-Dimensional Variational Data Assimilation[J]. Journal of Computer Research and Development, 2005, 42(6): 1059-1064.

Catalog

    Article views (1122) PDF downloads (809) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return