• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Yingxin and Ruan Xiaogang. Feature Selection for Cancer Classification Based on Support Vector Machine[J]. Journal of Computer Research and Development, 2005, 42(10): 1796-1801.
Citation: Li Yingxin and Ruan Xiaogang. Feature Selection for Cancer Classification Based on Support Vector Machine[J]. Journal of Computer Research and Development, 2005, 42(10): 1796-1801.

Feature Selection for Cancer Classification Based on Support Vector Machine

More Information
  • Published Date: October 14, 2005
  • Feature selection is an essential step to perform cancer classification with DNA microarrays, for there are a large number of genes from which to predict classes and a relatively small number of samples. This work addresses the problem of selection of a small subset of genes for classification from broad patterns of gene expression profiles by proposing a two-step feature selection method. The first step uses a new metric proposed in this paper as the criteria for class separability to remove the genes irrelevant to the classification task, and then a support vector machine with radial basis function kernel is applied to validate the classification performance of the genes selected for distinguishing different tissue types. The second step filters out the redundant genes by the sensitivity analysis based on the support vector machine classifier after pair-wise redundancy analysis. The two steps are applied to the gene expression profiles of human acute leukemia, and a better and more compact gene subset is obtained in contrast with the baseline method, which shows the feasibility and effectiveness of the method proposed.
  • Related Articles

    [1]Wang Xianghai, Zhang Wenya, Xing Junyu, Lü Fang, Mu Zhenhua. High-order Caputo Fractional Order Differential Operator and Its Application in Image Enhancement[J]. Journal of Computer Research and Development, 2023, 60(2): 448-464. DOI: 10.7544/issn1000-1239.202110942
    [2]Liu Yanxiao, Wu Ping, Sun Qindong. Secret Image Sharing Schemes Based on Region Convolution Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1065-1074. DOI: 10.7544/issn1000-1239.2021.20200898
    [3]Ren Weixiang, Zhai Liming, Wang Lina, Jia Ju. Reference Image Generation Algorithm for JPEG Image Steganalysis Based on Convolutional Neural Network[J]. Journal of Computer Research and Development, 2019, 56(10): 2250-2261. DOI: 10.7544/issn1000-1239.2019.20190386
    [4]Wang Yilei, Zhuo Yifan, Wu Yingjie, Chen Mingqin. Question Answering Algorithm on Image Fragmentation Information Based on Deep Neural Network[J]. Journal of Computer Research and Development, 2018, 55(12): 2600-2610. DOI: 10.7544/issn1000-1239.2018.20180606
    [5]Zhou Yucong, Liu Yi, Wang Rui. Training Deep Neural Networks for Image Applications with Noisy Labels by Complementary Learning[J]. Journal of Computer Research and Development, 2017, 54(12): 2649-2659. DOI: 10.7544/issn1000-1239.2017.20170637
    [6]Shen Huanghui, Wang Zhensong, Zheng Weimin. An Efficient Memory Access Strategy for Transposition and Block Operation in Image Processing[J]. Journal of Computer Research and Development, 2013, 50(1): 188-196.
    [7]Ye Jianhong, Song Wen, Sun Shixin. Operating and Analyzing the Reproducibility of Empty Marking Nets[J]. Journal of Computer Research and Development, 2009, 46(8): 1378-1385.
    [8]Bai Chenggang, Su Liang, Zhao Yingchun, Guo Junhong, and Cai Kaiyuan. Is the Reliability of Web Services Related to the Change Rate of Operational Profiles[J]. Journal of Computer Research and Development, 2008, 45(12): 2044-2051.
    [9]Zheng Qingfang, Gao Wen. Adaptive Skin Detection in JPEG Compressed Images[J]. Journal of Computer Research and Development, 2006, 43(7): 1194-1200.
    [10]Bao Fumin, Li Aiguo, Qin Zheng. Image Fusion Using SGNN[J]. Journal of Computer Research and Development, 2005, 42(3).

Catalog

    Article views (960) PDF downloads (1045) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return