• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.
Citation: Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.

Mining Frequent Patterns in Data Streams

More Information
  • Published Date: December 14, 2005
  • Finding frequent items is one of the most basic problems in the data streams. The limitless and mobility of data streams make the traditional frequent-pattern algorithm difficult to extend to data streams. According to data streams characteristic, inspired by the fact that the FP-growth provides an effective algorithm for frequent pattern mining, a new FP-DS algorithm for mining frequent patterns from data streams is proposed. In addition, the method, in which data streams are partitioned and frequent items are mined step by step, is adopted in the algorithm. So users may continuously get present frequent items online and any length frequent patterns for data streams can effectively be mined. Through introducing error ε, a large number of non- frequent items will be cut down and the storage space of the data streams can be reduced. Based on this algorithm, the error of support is guaranteed not to exceed ε. The analysis and experiments show that this algorithm has good performance.
  • Related Articles

    [1]Wen Yingyou, Wang Shaopeng, Zhao Hong. The Maximal Regular Patterns Mining Algorithm Based on Landmark Window over Data Stream[J]. Journal of Computer Research and Development, 2017, 54(1): 94-110. DOI: 10.7544/issn1000-1239.2017.20150804
    [2]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [3]Shen Yan, Song Shunlin, Zhu Yuquan. Mining Algorithm of Association Rules Based on Disk Table Resident FP-TREE[J]. Journal of Computer Research and Development, 2012, 49(6): 1313-1322.
    [4]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [5]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [6]Tong Yongxin, Zhang Yuanyuan, Yuan Mei, Ma Shilong, Yu Dan, Zhao Li. An Efficient Algorithm for Mining Compressed Sequential Patterns[J]. Journal of Computer Research and Development, 2010, 47(1): 72-80.
    [7]Ao Fujiang, Wang Tao, Liu Baohong, Huang Kedi. CBC-DS: A Classification Algorithm Based on Closed Frequent Patterns for Mining Data Streams[J]. Journal of Computer Research and Development, 2009, 46(5): 779-786.
    [8]Wang Liming and Zhao Hui. Algorithms of Mining Global Maximum Frequent Itemsets Based on FP-Tree[J]. Journal of Computer Research and Development, 2007, 44(3).
    [9]Ma Haibing, Zhang Chenghong, Zhang Jin, and Hu Yunfa. Mining Frequent Patterns Based on IS\++-Tree Model[J]. Journal of Computer Research and Development, 2005, 42(4): 588-593.
    [10]Qin Liangxi, Shi Zhongzhi. SFP-Max—A Sorted FP-Tree Based Algorithm for Maximal Frequent Patterns Mining[J]. Journal of Computer Research and Development, 2005, 42(2): 217-223.

Catalog

    Article views (894) PDF downloads (975) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return