• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Lin Youfang, Wang Tianyu, Tang Rui, Zhou Yuanwei, Huang Houkuan. An Effective Model and Algorithm for Community Detection in Social Networks[J]. Journal of Computer Research and Development, 2012, 49(2): 337-345.
Citation: Lin Youfang, Wang Tianyu, Tang Rui, Zhou Yuanwei, Huang Houkuan. An Effective Model and Algorithm for Community Detection in Social Networks[J]. Journal of Computer Research and Development, 2012, 49(2): 337-345.

An Effective Model and Algorithm for Community Detection in Social Networks

More Information
  • Published Date: February 14, 2012
  • In the research area of community detection in social network, there exist problems such as some algorithms with comparatively satisfactory detection result having high time complexity, current fast algorithms for large scale network resulting in low quality partition results, and lacking of model and mechanism to express and utilize actor and link attributes. To solve these problems, this paper proposes a model of edge stability coefficient and a model of complete information graph that can express the tightness of relation among actors, based on which an effective community detection algorithm is designed and implemented. The proposed model of complete information graph has high generality which makes it applicable to different community detection algorithms that need the input of fused information from actor and link attributes. Experiments show that the algorithm based on models of edge stability coefficient and complete information graph is effective to the problem of community detection in social networks with relatively less time cost. The algorithm is applicable to both weighted and unweighted networks with a comparatively fast speed and high quality partition result as well.
  • Related Articles

    [1]Wang Yuanzheng, Sun Wenxiang, Fan Yixing, Liao Huaming, Guo Jiafeng. A Cross-Modal Entity Linking Model Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2025, 62(3): 662-671. DOI: 10.7544/issn1000-1239.202330731
    [2]Wu Yue, Yuan Yongzhe, Yue Mingyu, Gong Maoguo, Li Hao, Zhang Mingyang, Ma Wenping, Miao Qiguang. Feature Mining Method of Multi-Dimensional Information Fusion in Point Cloud Registration[J]. Journal of Computer Research and Development, 2022, 59(8): 1732-1741. DOI: 10.7544/issn1000-1239.20220042
    [3]Luo Sheng, Miao Duoqian, Zhang Zhifei, Zhang Yuanjian, Hu Shengdan. A Link Prediction Model Based on Hierarchical Information Granular Representation for Attributed Graphs[J]. Journal of Computer Research and Development, 2019, 56(3): 623-634. DOI: 10.7544/issn1000-1239.2019.20170961
    [4]Wang Zhiqiang, Liang Jiye, Li Ru. Probability Matrix Factorization for Link Prediction Based on Information Fusion[J]. Journal of Computer Research and Development, 2019, 56(2): 306-318. DOI: 10.7544/issn1000-1239.2019.20170746
    [5]Liu Ye, Zhu Weiheng, Pan Yan, Yin Jian. Multiple Sources Fusion for Link Prediction via Low-Rank and Sparse Matrix Decomposition[J]. Journal of Computer Research and Development, 2015, 52(2): 423-436. DOI: 10.7544/issn1000-1239.2015.20140221
    [6]Yang Dan, Shen Derong, Nie Tiezheng, Yu Ge, Kou Yue. Entity Association Mining Algorithm CFRQ4A in Heterogeneous Information Spaces[J]. Journal of Computer Research and Development, 2014, 51(4): 895-904.
    [7]Zhu Mu, Meng Fanrong, and Zhou Yong. Density-Based Link Clustering Algorithm for Overlapping Community Detection[J]. Journal of Computer Research and Development, 2013, 50(12): 2520-2530.
    [8]Liu Dayou, Jin Di, He Dongxiao, Huang Jing, Yang Jianning, Yang Bo. Community Mining in Complex Networks[J]. Journal of Computer Research and Development, 2013, 50(10): 2140-2154.
    [9]Zhang Xianchao, Xu Wen, Gao Liang, and Liang Wenxin. Combining Content and Link Analysis for Local Web Community Extraction[J]. Journal of Computer Research and Development, 2012, 49(11): 2352-2358.
    [10]Xue Xiaobing, Han Jieling, Jiang Yuan, and Zhou Zhihua. Link Recommendation in Web Index Page Based on Multi-Instance Learning Techniques[J]. Journal of Computer Research and Development, 2007, 44(3).

Catalog

    Article views (1309) PDF downloads (1388) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return