• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Guofu, Dou Qiang, Ban Dongsong, Dou Wenhua, and Song Lei. A Novel Passive-Landmark Based Network Distance Prediction Method[J]. Journal of Computer Research and Development, 2011, 48(1): 125-132.
Citation: Wu Guofu, Dou Qiang, Ban Dongsong, Dou Wenhua, and Song Lei. A Novel Passive-Landmark Based Network Distance Prediction Method[J]. Journal of Computer Research and Development, 2011, 48(1): 125-132.

A Novel Passive-Landmark Based Network Distance Prediction Method

More Information
  • Published Date: January 14, 2011
  • With the direction of network topology information, the performance of large scale distributed applications could be enhanced greatly. However, if the topology information between nodes is obtained by directly measure, the cost of the probing packets may be more than the gain from the performance improvement. This paper proposes a novel passive landmark based network distance prediction method-PLNDP. The vector of transmission delay from normal node to landmarks is embedded into the metric space R\+n by the Lipschitz transformation. After getting the network coordinates, normal nodes use the distance function to compute the distance between coordinates. Then the network distances between nodes is predicted by the distance between nodes coordinates. Unlike other network coordinates system, landmarks in PLNDP only need to respond to probes passively, while not measuring distances to other landmarks actively. Existing high performance public servers, such as DNS servers and Web servers, can be used as landmarks. So the cost of deployment can be reduced greatly. In order to improve the prediction accuracy, valid landmarks and correctional factor are used in the distance function. Experiment results show that, for several different accuracy metrics, PLNDP is better than classical network distance prediction methods GNP and Vivaldi, especially when some landmarks have been failed.
  • Related Articles

    [1]Wu Jinjin, Liu Quan, Chen Song, Yan Yan. Averaged Weighted Double Deep Q-Network[J]. Journal of Computer Research and Development, 2020, 57(3): 576-589. DOI: 10.7544/issn1000-1239.2020.20190159
    [2]Zhu Fei, Wu Wen, Liu Quan, Fu Yuchen. A Deep Q-Network Method Based on Upper Confidence Bound Experience Sampling[J]. Journal of Computer Research and Development, 2018, 55(8): 1694-1705. DOI: 10.7544/issn1000-1239.2018.20180148
    [3]Yang Yatao, Zhang Yaze, Li Zichen, Zhang Fengjuan, Liu Boya. RAKA: New Authenticated Key Agreement Protocol Based on Ring-LWE[J]. Journal of Computer Research and Development, 2017, 54(10): 2187-2192. DOI: 10.7544/issn1000-1239.2017.20170477
    [4]Chen Junyu, Zhou Gang, Nan Yu, Zeng Qi. Semi-Supervised Local Expansion Method for Overlapping Community Detection[J]. Journal of Computer Research and Development, 2016, 53(6): 1376-1388. DOI: 10.7544/issn1000-1239.2016.20148339
    [5]He Xianmang, Chen Yindong, Li Dong, Hao Yanni. Study on Semi-Homogenous Algorithm Based on Ring Generalization[J]. Journal of Computer Research and Development, 2015, 52(10): 2382-2394. DOI: 10.7544/issn1000-1239.2015.20150494
    [6]Yang Shilai, Yang Yahui, Shen Qingni, and Huang Haizhen. A Method of Intrusion Detection Based on Semi-Supervised GHSOM[J]. Journal of Computer Research and Development, 2013, 50(11): 2375-2382.
    [7]Li Yufeng, Huang Shengjun, and Zhou Zhihua. Regularized Semi-Supervised Multi-Label Learning[J]. Journal of Computer Research and Development, 2012, 49(6): 1272-1278.
    [8]Liu Tao, He Yanxiang, Xiong Qi. A Q-Learning Based Real-Time Mitigating Mechanism against LDoS Attack and Its Modeling and Simulation with CPN[J]. Journal of Computer Research and Development, 2011, 48(3): 432-439.
    [9]Chen Shaozhen, Wang Wenqiang, Peng Shujuan. Efficient AttributeBased Ring Signature Schemes[J]. Journal of Computer Research and Development, 2010, 47(12).
    [10]Yang Jian, Wang Jue, Zhong Ning. Laplacian Semi-Supervised Regression on a Manifold[J]. Journal of Computer Research and Development, 2007, 44(7): 1121-1127.

Catalog

    Article views (665) PDF downloads (606) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return