• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhao Huan, Wang Gangjin, Hu Lian, and Peng Xiujuan. Voice Activity Detection Based on Sample Entropy in Car Environments[J]. Journal of Computer Research and Development, 2011, 48(3): 471-476.
Citation: Zhao Huan, Wang Gangjin, Hu Lian, and Peng Xiujuan. Voice Activity Detection Based on Sample Entropy in Car Environments[J]. Journal of Computer Research and Development, 2011, 48(3): 471-476.

Voice Activity Detection Based on Sample Entropy in Car Environments

More Information
  • Published Date: March 14, 2011
  • One of the key issues in practical speech processing is to precisely locate endpoints of the input utterance to be free of non-speech regions. Although lots of studies have been performed to solve this problem, the operation of existing voice activity detection (VAD) algorithms is still far away from ideal. This paper proposes a robust feature for VAD method in car environments based on sample entropy (SampEn) which is an improved algorithm of approximate entropy (ApEn). In addition, we adopt fuzzy C means clustering algorithm and Bayesian information criterion algorithm to estimate the thresholds of the SampEn characteristic, and use dual thresholds method for VAD. Experiments on the TIMIT continuous speech database show that, in the car noise environments, the detection accuracy of SampEn and ApEn are both much higher than that of spectral entropy (SE) and energy spectral entropy (ESE). SampEn method has better detection performance than ApEn, especially when the SNR is not more than 0dB, and SampEn method detection performance is superior to ApEn nearly 10%. Therefore, the SampEn method has a good application prospect in automotive field and can provide accurate VAD techniques for car navigation.
  • Related Articles

    [1]Fan Wei, Liu Yong. Social Network Information Diffusion Prediction Based on Spatial-Temporal Transformer[J]. Journal of Computer Research and Development, 2022, 59(8): 1757-1769. DOI: 10.7544/issn1000-1239.20220064
    [2]Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
    [3]Xu Mingda, Zhang Zike, Xu Xiaoke. Research on Spreading Mechanism of False Information in Social Networks by Motif Degree[J]. Journal of Computer Research and Development, 2021, 58(7): 1425-1435. DOI: 10.7544/issn1000-1239.2021.20200806
    [4]Li Yingying, Ma Shuai, Jiang Haoyi, Liu Zhe, Hu Chunming, Li Xiong. An Approach for Storytelling by Correlating Events from Social Networks[J]. Journal of Computer Research and Development, 2018, 55(9): 1972-1986. DOI: 10.7544/issn1000-1239.2018.20180155
    [5]Liao Guoqiong, Jiang Shan, Zhou Zhiheng, Wan Changxuan. Dual Fine-Granularity POI Recommendation on Location-Based Social Networks[J]. Journal of Computer Research and Development, 2017, 54(11): 2600-2610. DOI: 10.7544/issn1000-1239.2017.20160502
    [6]Tan Zhenhua, Shi Yingcheng, Shi Nanxiang, Yang Guangming, Wang Xingwei. Rumor Propagation Analysis Model Inspired by Gravity Theory for Online Social Networks[J]. Journal of Computer Research and Development, 2017, 54(11): 2586-2599. DOI: 10.7544/issn1000-1239.2017.20160434
    [7]Wang Zhenwen, Xiao Weidong, and Tan Wentang. Classification in Networked Data Based on the Probability Generative Model[J]. Journal of Computer Research and Development, 2013, 50(12): 2642-2650.
    [8]Tan Wentang, Wang Zhenwen, Yin Fengjing, Ge Bin, and Xiao Weidong. A Partial Comparative Cross Collections LDA Model[J]. Journal of Computer Research and Development, 2013, 50(9): 1943-1953.
    [9]Guo Qiaojin, Li Ning, Yang Yubin, and Wu Gangshan. LDA-CRF: Object Detection Based on Graphical Model[J]. Journal of Computer Research and Development, 2012, 49(11): 2296-2304.
    [10]Li Zhi, Li Qianmu, Zhang Hong, Liu Fengyu. Closely Social Circuit Based Routing in Social Delay Tolerant Networks[J]. Journal of Computer Research and Development, 2012, 49(6): 1185-1195.

Catalog

    Article views (800) PDF downloads (635) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return