• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Luo Xiaonan, Lin Mouguang, Ji Changbo, and Li Zhiyong. A Progressive Geometry Simplification Method for Mobile Computing Terminal[J]. Journal of Computer Research and Development, 2007, 44(6): 1038-1043.
Citation: Luo Xiaonan, Lin Mouguang, Ji Changbo, and Li Zhiyong. A Progressive Geometry Simplification Method for Mobile Computing Terminal[J]. Journal of Computer Research and Development, 2007, 44(6): 1038-1043.

A Progressive Geometry Simplification Method for Mobile Computing Terminal

More Information
  • Published Date: June 14, 2007
  • This paper focuses on a progressive geometry simplification method for the mobile computing terminals. Mobile 3D graphics on mobile terminals is the significant ongoing research. By considering the limitations of the mobile terminals, such as small display panel, low processor performance, narrow wireless bandwidth, the investigation of the progressive display of mobile 3D graphics is highly necessary. An iterative simplification method based on the reverse Kobbelt subdivision scheme is proposed to give a solution to displaying 3D graphics on mobile computing terminals. The proposed simplification method progressively simplifies the quadrangle mesh models, by iteratively dividing a mesh model into odd vertexes and even vertexes, and saving the even vertexes as a sparse model. Furthermore, by iteratively using odd vertexes as details and adding them to the sparse model, a progressive display pattern is introduced to support progressive display of LOD (level of detail) models and lossless reconstruction of the original mesh models. The new simplification method is compact and fast, and it can implement progressive display of the mobile 3D graphics efficiently. The experimental results on PDA Mio 336 show that this research will have a wider prospect in the mobile 3D graphics field, such as real-time interaction on mobile computing terminals.
  • Related Articles

    [1]Liu Lei, Shi Zhiguo, Su Haoru, and Li Hong. Image Segmentation Based on Higher Order Markov Random Field[J]. Journal of Computer Research and Development, 2013, 50(9): 1933-1942.
    [2]Du Yi, Zhang Ting, Lu Detang, Li Daolun. An Interpolation Method Using an Improved Markov Model[J]. Journal of Computer Research and Development, 2012, 49(3): 565-571.
    [3]Dong Yongquan, Li Qingzhong, Ding Yanhui, Peng Zhaohui. Constrained Conditional Random Fields for Semantic Annotation of Web Data[J]. Journal of Computer Research and Development, 2012, 49(2): 361-371.
    [4]Chen Yarui and Liao Shizhong. A Normalized Structure Selection Algorithm Based on Coupling for Gaussian Mean Fields[J]. Journal of Computer Research and Development, 2010, 47(9): 1497-1503.
    [5]Li Guochen, Wang Ruibo, Li Jihong. Automatic Labeling of Chinese Functional Chunks Based on Conditional Random Fields Model[J]. Journal of Computer Research and Development, 2010, 47(2): 336-343.
    [6]Wang Wenhui, Feng Qianjin, Chen Wufan. Segmentation of Brain MR Images Based on the Measurement of Difference of Mutual Information and Gauss-Markov Random Field Model[J]. Journal of Computer Research and Development, 2009, 46(3): 521-527.
    [7]Ge Hongwei and Liang Yanchun. A Multiple Sequence Alignment Algorithm Based on a Hidden Markov Model and Immune Particle Swarm Optimization[J]. Journal of Computer Research and Development, 2006, 43(8): 1330-1336.
    [8]Huang Chenrong, Zhang Zhengjun, Wu Huizhong. A Multi-Scale Images Edge Detection Model Based on Gap Statistic of Order Wilcoxon Rank Sum[J]. Journal of Computer Research and Development, 2005, 42(12): 2111-2117.
    [9]Shi Rui and Yang Xiaozong. Research on the Node Spatial Probabilistic Distribution of the Random Waypoint Mobility Model for Ad Hoc Network[J]. Journal of Computer Research and Development, 2005, 42(12): 2056-2062.
    [10]Tang Min, Wang Yuanquan, Pheng Ann Heng, Xia Deshen. Tracking Cardiac MRI Tag by Markov Random Field Theory[J]. Journal of Computer Research and Development, 2005, 42(10): 1740-1745.

Catalog

    Article views (630) PDF downloads (520) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return