• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xie Kunwu, Bi Xiaoling, and Ye Bin. Clustering Algorithm of High-Dimensional Data Based on Units[J]. Journal of Computer Research and Development, 2007, 44(9): 1618-1623.
Citation: Xie Kunwu, Bi Xiaoling, and Ye Bin. Clustering Algorithm of High-Dimensional Data Based on Units[J]. Journal of Computer Research and Development, 2007, 44(9): 1618-1623.

Clustering Algorithm of High-Dimensional Data Based on Units

More Information
  • Published Date: September 14, 2007
  • Clustering is a data mining problem that has received significant attention from the database community. Data set size, dimensionality and sparsity have been identified as aspects that make clustering more difficult. Clustering in high-dimensional spaces is a difficult problem which is recurrent in many domains, for example, in image analysis. High dimension according to higher spatial dimension, data point distribution sparsity, and average density, therefore, discover the data gathering the kind quite to be difficult. The bottleneck of distance-based methods in clustering high-dimensional data sets is calculating the distance between data points. At present the research technique mainly concentrates on the density method based on the grid method and the characteristic method, and this research usually lies in making the improved data to gather with emphasis on the kind of process performance, including obtaining accurately gathering a kind of center, removing noise and so on. Instead of distance calculation, CAHD (clustering algorithm high-dimensional data) searches the dense units in n-dimension space and subspace from both bottom-up and top-down directions in the meantime, and then it clusters these dense units by using bitwise AND. The search strategy reduces search space to improve efficiency and the only use of bitwise and bit-shift machine instructions in clustering makes the algorithm more efficient. The algorithm CAHD is proposed for high-dimensional data sets. Experiments based on the data set indicate that the algorithm has very good validity.
  • Related Articles

    [1]Wu Jianhui, Zhang Jing, Li Renfa, Liu Zhaohua. A Multi-Subpopulation PSO Immune Algorithm and Its Application on Function Optimization[J]. Journal of Computer Research and Development, 2012, 49(9): 1883-1898.
    [2]Wang Bin. A Discrete Particle Swarm Optimization-based Algorithm for Polygonal Approximation of Digital Curves[J]. Journal of Computer Research and Development, 2010, 47(11): 1886-1892.
    [3]Jie Jing, Zeng Jianchao, Han Chongzhao. Self-Organized Particle Swarm Optimization Based on Feedback Control of Diversity[J]. Journal of Computer Research and Development, 2008, 45(3): 464-471.
    [4]Hu Jianxiu and Zeng Jianchao. A Two-Order Particle Swarm Optimization Model[J]. Journal of Computer Research and Development, 2007, 44(11): 1825-1831.
    [5]Ma Ming, Zhou Chunguang, Zhang Libiao, Ma Jie. Fuzzy Neural Network Optimization by a Multi-Objective Particle Swarm Optimization Algorithm[J]. Journal of Computer Research and Development, 2006, 43(12): 2104-2109.
    [6]Cui Zhihua and Zeng Jianchao. Modified Particle Swarm Optimization Based on Differential Model[J]. Journal of Computer Research and Development, 2006, 43(4): 646-653.
    [7]Zeng Jianchao and Cui Zhihua. A New Unified Model of Particle Swarm Optimization and Its Theoretical Analysis[J]. Journal of Computer Research and Development, 2006, 43(1): 96-100.
    [8]Dou Quansheng, Zhou Chunguang, Xu Zhongyu, Pan Guanyu. Swarm-Core Evolutionary Particle Swarm Optimization in Dynamic Optimization Environments[J]. Journal of Computer Research and Development, 2006, 43(1): 89-95.
    [9]Liu Anfeng, Chen Zhigang, Long Guoping, and Zeng Zhiwen. A Resource Optimizing Scheduling Algorithm of Differentiated Service of Double Minimum Balance in Web Clusters[J]. Journal of Computer Research and Development, 2005, 42(11): 1969-1976.
    [10]Chen Hongzhou, Gu Guochang, and Kang Wangxing. A Sentient Particle Swarm Optimization[J]. Journal of Computer Research and Development, 2005, 42(8): 1299-1305.

Catalog

    Article views (689) PDF downloads (498) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return