• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Xiongfei, Li Jun, Qu Chengwei, Liu Lijuan, Sun Tao. Balancing Method for Skewed Training Set in Data Mining[J]. Journal of Computer Research and Development, 2012, 49(2): 346-353.
Citation: Li Xiongfei, Li Jun, Qu Chengwei, Liu Lijuan, Sun Tao. Balancing Method for Skewed Training Set in Data Mining[J]. Journal of Computer Research and Development, 2012, 49(2): 346-353.

Balancing Method for Skewed Training Set in Data Mining

More Information
  • Published Date: February 14, 2012
  • Classification is one of the important tasks in data mining. The training sets that are extracted for training classifiers are usually skewed. Traditional classification algorithms usually result in low predictive accuracy of minority classes when handling skewed training sets. The existing balancing algorithms only deal with the data sets which contain two classes of cases. In order to balance the training sets that have several classes, an algorithm called SSGP is introduced, based on the idea that little difference lies between the same class cases. SSGP forms new minority class cases by interpolating between several minority class cases that lie together, and makes sure that the number of each minority class case increases at the same speed. It is proved that SSGP would not add noise to the data set. To enhance the efficiency, SSGP adopts the modulus in stead of calculating a lot of dissimilarity between cases. The experimental results show that SSGP can improve the predictive accuracy of several minority classes by running once.
  • Related Articles

    [1]Wang Yuanzheng, Sun Wenxiang, Fan Yixing, Liao Huaming, Guo Jiafeng. A Cross-Modal Entity Linking Model Based on Contrastive Learning[J]. Journal of Computer Research and Development, 2025, 62(3): 662-671. DOI: 10.7544/issn1000-1239.202330731
    [2]Wu Yue, Yuan Yongzhe, Yue Mingyu, Gong Maoguo, Li Hao, Zhang Mingyang, Ma Wenping, Miao Qiguang. Feature Mining Method of Multi-Dimensional Information Fusion in Point Cloud Registration[J]. Journal of Computer Research and Development, 2022, 59(8): 1732-1741. DOI: 10.7544/issn1000-1239.20220042
    [3]Luo Sheng, Miao Duoqian, Zhang Zhifei, Zhang Yuanjian, Hu Shengdan. A Link Prediction Model Based on Hierarchical Information Granular Representation for Attributed Graphs[J]. Journal of Computer Research and Development, 2019, 56(3): 623-634. DOI: 10.7544/issn1000-1239.2019.20170961
    [4]Wang Zhiqiang, Liang Jiye, Li Ru. Probability Matrix Factorization for Link Prediction Based on Information Fusion[J]. Journal of Computer Research and Development, 2019, 56(2): 306-318. DOI: 10.7544/issn1000-1239.2019.20170746
    [5]Liu Ye, Zhu Weiheng, Pan Yan, Yin Jian. Multiple Sources Fusion for Link Prediction via Low-Rank and Sparse Matrix Decomposition[J]. Journal of Computer Research and Development, 2015, 52(2): 423-436. DOI: 10.7544/issn1000-1239.2015.20140221
    [6]Yang Dan, Shen Derong, Nie Tiezheng, Yu Ge, Kou Yue. Entity Association Mining Algorithm CFRQ4A in Heterogeneous Information Spaces[J]. Journal of Computer Research and Development, 2014, 51(4): 895-904.
    [7]Zhu Mu, Meng Fanrong, and Zhou Yong. Density-Based Link Clustering Algorithm for Overlapping Community Detection[J]. Journal of Computer Research and Development, 2013, 50(12): 2520-2530.
    [8]Liu Dayou, Jin Di, He Dongxiao, Huang Jing, Yang Jianning, Yang Bo. Community Mining in Complex Networks[J]. Journal of Computer Research and Development, 2013, 50(10): 2140-2154.
    [9]Zhang Xianchao, Xu Wen, Gao Liang, and Liang Wenxin. Combining Content and Link Analysis for Local Web Community Extraction[J]. Journal of Computer Research and Development, 2012, 49(11): 2352-2358.
    [10]Xue Xiaobing, Han Jieling, Jiang Yuan, and Zhou Zhihua. Link Recommendation in Web Index Page Based on Multi-Instance Learning Techniques[J]. Journal of Computer Research and Development, 2007, 44(3).

Catalog

    Article views (847) PDF downloads (394) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return