• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Feng Zhiquan, Yang Bo, Li Yi, Wang Zhonghua, Zheng Yanwei. Research on Human Hand Tracking Aiming at Improving Its Accurateness[J]. Journal of Computer Research and Development, 2008, 45(7): 1239-1248.
Citation: Feng Zhiquan, Yang Bo, Li Yi, Wang Zhonghua, Zheng Yanwei. Research on Human Hand Tracking Aiming at Improving Its Accurateness[J]. Journal of Computer Research and Development, 2008, 45(7): 1239-1248.

Research on Human Hand Tracking Aiming at Improving Its Accurateness

More Information
  • Published Date: July 14, 2008
  • On the one hand, the unscented Kalman filter (UKF) is an algorithm for recursive state estimation in nonlinear systems by transforming approximations of the distributions through the nonlinear system and observation functions. This transformation is used to compute predictions for the state and observation variables in the standard Kalman filter. In this approach, the distribution is represented by a set of deterministically chosen points, which are called sigma points. These points capture the mean and covariance of the random variables and are propagated through the nonlinear system. On the other hand, interactive multiple model (IMM) filter can deal with system parameter uncertainties and obtain better precision motions. In order to combine UKF and IMM and absorb their primes, starting with both the inherent mechanism of UKF and dynamic state models of human hand, and aiming at improving accurateness of human hand tracking, some theoretical problems unsolved in UKF are firstly discussed and a novel improved UKF based on double unscented transformation (UKFDUT) is put forward. Subsequently, IMM is modified and changed into multiple model(MM). The research results show that sigma points take on many wonderful features through which some novel approaches can be explored to improve tracking precision, and that using MM for state prediction can reach higher precision than using IMM lonely. The experimental results also demonstrate the effectiveness and satisfactory tracking results.
  • Related Articles

    [1]Wei Jinxia, Long Chun, Fu Hao, Gong Liangyi, Zhao Jing, Wan Wei, Huang Pan. Malicious Domain Name Detection Method Based on Enhanced Embedded Feature Hypergraph Learning[J]. Journal of Computer Research and Development, 2024, 61(9): 2334-2346. DOI: 10.7544/issn1000-1239.202330117
    [2]Guo Yingjie, Liu Xiaoyan, Wu Chenxi, Guo Maozu, Li Ao. U-Statistics and Ensemble Learning Based Method for Gene-Gene Interaction Detection[J]. Journal of Computer Research and Development, 2018, 55(8): 1683-1693. DOI: 10.7544/issn1000-1239.2018.20180365
    [3]Liu Qiao, Han Minghao, Yang Xiaohui, Liu Yao, Wu Zufeng. Representation Learning Based Relational Inference Algorithm with Semantical Aspect Awareness[J]. Journal of Computer Research and Development, 2017, 54(8): 1682-1692. DOI: 10.7544/issn1000-1239.2017.20170200
    [4]Wang Youwei, Wang Weiping, Meng Dan. Query Optimization by Statistical Approach for Hive Data Warehouse[J]. Journal of Computer Research and Development, 2015, 52(6): 1452-1462. DOI: 10.7544/issn1000-1239.2015.20140403
    [5]Zhang Yingjie, Gong Zhonghan. Hybrid Differential Evolution Gravitation Search Algorithm Based on Threshold Statistical Learning[J]. Journal of Computer Research and Development, 2014, 51(10): 2187-2194. DOI: 10.7544/issn1000-1239.2014.20130395
    [6]Wu Yan, Zhang Qi, and Huang Xuanjing. Selecting Expansion Terms as a Set Via Integer Linear Programming[J]. Journal of Computer Research and Development, 2013, 50(8): 1737-1743.
    [7]Pu Qiang, He Daqing, Yang Guowei. An Estimation of Query Language Model Based on Statistical Semantic Clustering[J]. Journal of Computer Research and Development, 2011, 48(2): 224-231.
    [8]Liu Dayou, Yu Peng, Gao Ying, Qi Hong, and Sun Shuyang. Research Progress in Statistical Relational Learning[J]. Journal of Computer Research and Development, 2008, 45(12): 2110-2119.
    [9]Zhou Hongwei, Zhang Chengyi, and Zhang Minxuan. A Method of Statistics-Based Cache Leakage Power Estimation[J]. Journal of Computer Research and Development, 2008, 45(2): 367-374.
    [10]Xu Cunlu, Chen Yanqiu, Lu Hanqing. Statistical Landscape Features for Texture Retrieval[J]. Journal of Computer Research and Development, 2006, 43(4): 702-707.

Catalog

    Article views (705) PDF downloads (487) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return