• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Jianfu, Guo Maozu, and Liu Yang. An Evolutionary Tree Reconstruction Method Combining Quartet Puzzling and Neighbor Joining[J]. Journal of Computer Research and Development, 2008, 45(11): 1965-1973.
Citation: Li Jianfu, Guo Maozu, and Liu Yang. An Evolutionary Tree Reconstruction Method Combining Quartet Puzzling and Neighbor Joining[J]. Journal of Computer Research and Development, 2008, 45(11): 1965-1973.

An Evolutionary Tree Reconstruction Method Combining Quartet Puzzling and Neighbor Joining

More Information
  • Published Date: November 14, 2008
  • Evolutionary tree reconstruction is a very important topic in biology. A reliable evolutionary tree has many important applications in medical and biological research, such as drug discovery and conservation biology. A rich variety of tree reconstruction methods have been developed, which fall into three categories: 1) maximum parsimony methods, 2) distance based methods, and 3) approaches applying the maximum likelihood principle. Maximum likelihood programs can recover the correct tree more frequently than other methods. But, inference of evolutionary trees using the maximum likelihood principle is NP-hard. The reconstruction method quartet puzzling(QP) is currently receiving considerable attention. QP is a divide-and-conquer approach to the maximum likelihood problem. QP works by estimating the set Q of quartet topologies, then combining the information in Q into an evolutionary tree on the whole set by some recombination technique. However, it is demonstrated that current performance of QP is far from satisfactory as expected. How to reconcile the different topologies of the quartets into one tree is still a major problem faced by QP. In order to improve QP, a new method named QPNJ is proposed, which has the same computational complexity as QP. Experiments with simulated datasets show that QPNJ is more accurate than others. Moreover, unlike QP, QPNJ is less dependent on the shape of the correct tree.
  • Related Articles

    [1]Ji Zhong, Nie Linhong. Texture Image Classification with Noise-Tolerant Local Binary Pattern[J]. Journal of Computer Research and Development, 2016, 53(5): 1128-1135. DOI: 10.7544/issn1000-1239.2016.20148320
    [2]Lu Daying, Zhu Dengming, Wang Zhaoqi. Texture-Based Multiresolution Flow Visualization[J]. Journal of Computer Research and Development, 2015, 52(8): 1910-1920. DOI: 10.7544/issn1000-1239.2015.20140417
    [3]Wang Huafeng, Wang Yuting, Chai Hua. State-of-the-Art on Texture-Based Well Logging Image Classification[J]. Journal of Computer Research and Development, 2013, 50(6): 1335-1348.
    [4]Zhong Hua,Yang Xiaoming, and Jiao Licheng. Texture Classification Based on Multiresolution Co-occurrence Matrix[J]. Journal of Computer Research and Development, 2011, 48(11): 1991-1999.
    [5]Xiong Changzhen, Huang Jing, Qi Dongxu. Irregular Patch for Texture Synthesis[J]. Journal of Computer Research and Development, 2007, 44(4): 701-706.
    [6]Li Jie, Zhu Weile, Wang Lei. Texture Recognition Using the Wold Model and Support Vector Machines[J]. Journal of Computer Research and Development, 2007, 44(3).
    [7]Xu Cunlu, Chen Yanqiu, Lu Hanqing. Statistical Landscape Features for Texture Retrieval[J]. Journal of Computer Research and Development, 2006, 43(4): 702-707.
    [8]Yang Gang, Wang Wencheng, Wu Enhua. Texture Synthesis by the Border Image[J]. Journal of Computer Research and Development, 2005, 42(12): 2118-2125.
    [9]Shang Zhaowei, Zhang Mingxin, Zhao Ping, Shen Junyi. Different Complex Wavelet Transforms for Texture Retrieval and Similarity Measure[J]. Journal of Computer Research and Development, 2005, 42(10): 1746-1751.
    [10]Zhang Yan, Li Wenhui, Meng Yu, and Pang Yunjie. Fast Texture Synthesis Algorithm Using PSO[J]. Journal of Computer Research and Development, 2005, 42(3).

Catalog

    Article views (1038) PDF downloads (617) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return