• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
He Zhiying, Liang Xiaohui, and Zhao Qinping. Skeleton Extraction Approach Based on the Attributes of Surface and Tangency for Point Models[J]. Journal of Computer Research and Development, 2012, 49(7): 1377-1387.
Citation: He Zhiying, Liang Xiaohui, and Zhao Qinping. Skeleton Extraction Approach Based on the Attributes of Surface and Tangency for Point Models[J]. Journal of Computer Research and Development, 2012, 49(7): 1377-1387.

Skeleton Extraction Approach Based on the Attributes of Surface and Tangency for Point Models

More Information
  • Published Date: July 14, 2012
  • For the limitations of skeleton extraction on discrete point models and low-resolution models, this paper presents a novel skeleton extraction approach for point models based on the attributes of surface and tangency. Firstly, the definition and the calculating method of the two attributes are given. And then, geometry contraction is done by surface smooth contraction and skeleton attraction. Finally, the center points after iteration contraction are connected, and the skeleton of the model is obtained. Experiment results show that the skeleton extracted from this approach could express the geometry and topology of original model better. Even if the model lacks connection information and in low-resolution, the approach could also get good skeleton.
  • Related Articles

    [1]Shi Leyi, Zhu Hongqiang, Liu Yihao, Liu Jia. Intrusion Detection of Industrial Control System Based on Correlation Information Entropy and CNN-BiLSTM[J]. Journal of Computer Research and Development, 2019, 56(11): 2330-2338. DOI: 10.7544/issn1000-1239.2019.20190376
    [2]Yao Sheng, Xu Feng, Zhao Peng, Ji Xia. Intuitionistic Fuzzy Entropy Feature Selection Algorithm Based on Adaptive Neighborhood Space Rough Set Model[J]. Journal of Computer Research and Development, 2018, 55(4): 802-814. DOI: 10.7544/issn1000-1239.2018.20160919
    [3]Dong Hongbin, Teng Xuyang, Yang Xue. Feature Selection Based on the Measurement of Correlation Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(8): 1684-1695. DOI: 10.7544/issn1000-1239.2016.20160172
    [4]Tang Chenghua, Liu Pengcheng, Tang Shensheng, Xie Yi. Anomaly Intrusion Behavior Detection Based on Fuzzy Clustering and Features Selection[J]. Journal of Computer Research and Development, 2015, 52(3): 718-728. DOI: 10.7544/issn1000-1239.2015.20130601
    [5]Zhang Fengbin and Wang Tianbo. Real Value Negative Selection Algorithm with the n-Dimensional Chaotic Map[J]. Journal of Computer Research and Development, 2013, 50(7): 1387-1398.
    [6]Zhang Zhenhai, Li Shining, Li Zhigang, and Chen Hao. Multi-Label Feature Selection Algorithm Based on Information Entropy[J]. Journal of Computer Research and Development, 2013, 50(6): 1177-1184.
    [7]Zheng Liming, Zou Peng, Han Weihong, Li Aiping, Jia Yan. Traffic Anomaly Detection Using Multi-Dimensional Entropy Classification in Backbone Network[J]. Journal of Computer Research and Development, 2012, 49(9): 1972-1981.
    [8]Zhang Xiang, Deng Zhaohong, Wang Shitong, Choi Kupsze. Maximum Entropy Relief Feature Weighting[J]. Journal of Computer Research and Development, 2011, 48(6): 1038-1048.
    [9]Chen Shitao, Chen Guolong, Guo Wenzhong, and Liu Yanhua. Feature Selection of the Intrusion Detection Data Based on Particle Swarm Optimization and Neighborhood Reduction[J]. Journal of Computer Research and Development, 2010, 47(7): 1261-1267.
    [10]Hou Jian, Peng Jiayin, Zhang Yuzhuo, Zhang Chengyi. A Reverse Triple I Algorithm for Fuzzy Reasoning Based on Maximum Fuzzy Entropy Principle[J]. Journal of Computer Research and Development, 2006, 43(7): 1180-1185.

Catalog

    Article views (594) PDF downloads (747) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return