• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Junling, Yu Ge, Sun Huanliang. Topic-relevant Region Queries in Spatial Database[J]. Journal of Computer Research and Development, 2012, 49(10): 2171-2180.
Citation: Liu Junling, Yu Ge, Sun Huanliang. Topic-relevant Region Queries in Spatial Database[J]. Journal of Computer Research and Development, 2012, 49(10): 2171-2180.

Topic-relevant Region Queries in Spatial Database

More Information
  • Published Date: October 14, 2012
  • Spatial query processing is widely applied for the location-based service and the facility selection. This paper proposes and solves a novel type of spatial queries named Topic-Relevant Region (T2R) queries, which can be used to spatial decision analysis and location selection. Given a topic T defined by a feature set R, a query window q, a T2R query retrieves k non-overlapping regions that have the highest relevance values computed by the number of feature objects and their importance. As an example, the finance topic is defined by stock exchanges, insurance companies and banks. On the topic, T2R query finds finance centers intensively distributed feature objects. We propose three efficient algorithms to process T2R, which are Baseline (BSL), Filtering-Refinement (FR) and Shrink (SHR) algorithm. SHR can obtain the best pruning performance by clustering regions with high relevance values and shrinking them compared with the other two algorithms. The proposed algorithms solve problem of sorting the regions according to their relevance values with the topic at an arbitrary location. We evaluate the efficiency of the proposed algorithms with extensive experiments on real and synthetic datasets under a wide range of parameter settings and verify the effectiveness of T2R query by the real topic query.
  • Related Articles

    [1]Shi Leyi, Zhu Hongqiang, Liu Yihao, Liu Jia. Intrusion Detection of Industrial Control System Based on Correlation Information Entropy and CNN-BiLSTM[J]. Journal of Computer Research and Development, 2019, 56(11): 2330-2338. DOI: 10.7544/issn1000-1239.2019.20190376
    [2]Yao Sheng, Xu Feng, Zhao Peng, Ji Xia. Intuitionistic Fuzzy Entropy Feature Selection Algorithm Based on Adaptive Neighborhood Space Rough Set Model[J]. Journal of Computer Research and Development, 2018, 55(4): 802-814. DOI: 10.7544/issn1000-1239.2018.20160919
    [3]Dong Hongbin, Teng Xuyang, Yang Xue. Feature Selection Based on the Measurement of Correlation Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(8): 1684-1695. DOI: 10.7544/issn1000-1239.2016.20160172
    [4]Tang Chenghua, Liu Pengcheng, Tang Shensheng, Xie Yi. Anomaly Intrusion Behavior Detection Based on Fuzzy Clustering and Features Selection[J]. Journal of Computer Research and Development, 2015, 52(3): 718-728. DOI: 10.7544/issn1000-1239.2015.20130601
    [5]Zhang Fengbin and Wang Tianbo. Real Value Negative Selection Algorithm with the n-Dimensional Chaotic Map[J]. Journal of Computer Research and Development, 2013, 50(7): 1387-1398.
    [6]Zhang Zhenhai, Li Shining, Li Zhigang, and Chen Hao. Multi-Label Feature Selection Algorithm Based on Information Entropy[J]. Journal of Computer Research and Development, 2013, 50(6): 1177-1184.
    [7]Zheng Liming, Zou Peng, Han Weihong, Li Aiping, Jia Yan. Traffic Anomaly Detection Using Multi-Dimensional Entropy Classification in Backbone Network[J]. Journal of Computer Research and Development, 2012, 49(9): 1972-1981.
    [8]Zhang Xiang, Deng Zhaohong, Wang Shitong, Choi Kupsze. Maximum Entropy Relief Feature Weighting[J]. Journal of Computer Research and Development, 2011, 48(6): 1038-1048.
    [9]Chen Shitao, Chen Guolong, Guo Wenzhong, and Liu Yanhua. Feature Selection of the Intrusion Detection Data Based on Particle Swarm Optimization and Neighborhood Reduction[J]. Journal of Computer Research and Development, 2010, 47(7): 1261-1267.
    [10]Hou Jian, Peng Jiayin, Zhang Yuzhuo, Zhang Chengyi. A Reverse Triple I Algorithm for Fuzzy Reasoning Based on Maximum Fuzzy Entropy Principle[J]. Journal of Computer Research and Development, 2006, 43(7): 1180-1185.

Catalog

    Article views (669) PDF downloads (543) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return