• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Xizhao, Wang Tingting, and Zhai Junhai. An Attribute Reduction Algorithm Based on Instance Selection[J]. Journal of Computer Research and Development, 2012, 49(11): 2305-2310.
Citation: Wang Xizhao, Wang Tingting, and Zhai Junhai. An Attribute Reduction Algorithm Based on Instance Selection[J]. Journal of Computer Research and Development, 2012, 49(11): 2305-2310.

An Attribute Reduction Algorithm Based on Instance Selection

More Information
  • Published Date: November 14, 2012
  • Computing reduction of attributes plays an essential role in the framework of supervised learning based on rough sets. Attribute reduction algorithm based on discernibility matrix is one of the commonly used attribute reduction algorithms. Given an information system, all reductions can be found by using this algorithm. However, this algorithm suffers from the main problems: large memory requirement and large response time needed. Especially, for a large database, it is the bottleneck to store the discernibility matrix. To tackle this problem effectively, an attribute reduction algorithm based on instance selection is proposed. The algorithm consists of three stages: firstly, the most informative instances are selected from the training set; secondly, the discernibility matrix is computed by using the selected instances; finally, all reductions can be found. The experimental results show that the proposed method can efficiently reduce the computational complexity both of time and space especially on large databases.

Catalog

    Article views (1017) PDF downloads (750) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return