• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.
Citation: Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.

A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing

More Information
  • Published Date: March 14, 2013
  • Recently, privacy preserving trajectory data publishing has become a hot topic in data privacy preserving research fields. Most previous works on privacy preserving trajectory data publishing adopt clustering techniques. However, clustering based algorithms for trajectory data publishing only consider preserving the privacy of each single trajectory, ignoring the protection of the characteristics of trajectory clustering groups. Therefore, the publishing trajectory data by clustering are vulnerable to suffer re-clustering attacks, which is verified by theoretical analysis and simulated experiments. In order to avoid re-clustering attacks, a (k,δ,Δ)-anonymity model and a clustering hybrid based algorithm CH-TDP for privacy preserving trajectory data publishing are presented. The key idea of CH-TDP is to firstly hybridize between clustering groups, which are generated by the (k,δ)-anonymity model and the related algorithms, and then adopt perturbation within each clustering group. The aim of CH-TDP is to avoid suffering re-clustering attacks effectively while assuring the data quality of the released trajectory data not less than a threshold Δ. CH-TDP and the traditional algorithms are compared and experimental results show that CH-TDP is effective and feasible.

Catalog

    Article views (950) PDF downloads (751) Cited by()
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return