• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Yan, Zhou Chunguang, Huang Yanxin, and Feng Xiaoyue. Identification of Taste Signals of Tea Based on Minimal Uncertainty Neural Networks[J]. Journal of Computer Research and Development, 2005, 42(1): 66-71.
Citation: Wang Yan, Zhou Chunguang, Huang Yanxin, and Feng Xiaoyue. Identification of Taste Signals of Tea Based on Minimal Uncertainty Neural Networks[J]. Journal of Computer Research and Development, 2005, 42(1): 66-71.

Identification of Taste Signals of Tea Based on Minimal Uncertainty Neural Networks

More Information
  • Published Date: January 14, 2005
  • It is well known that determining the structure and training the parameters of neural networks efficiently are difficult in the field of neural networks research. These years it has been somewhat successful to construct neural networks in light of Bayesian theorem and to optimize neural networks according to particle swarm optimization respectively. A novel model of taste signals recognition based on minimal uncertainty neural networks is proposed in this paper. The model adopts minimization uncertainty adjudgment to construct the networks structure, and uses Bayesian theorem and particle swarm optimization (PSO) to determine the parameters of the networks rapidly and efficiently. The identification of the taste signals of 10 kinds of tea is successful in utilization of this model. The experimental results show the feasibility and probability of introducing the proposed model to the identification of taste signals of tea. Section 2 presents the model of minimal uncertainty neural networks (MUNN). How to determine the weights and biases of MUNN by Bayesian theorem, PSO, and the hybrid of them are illustrated respectively in section 3. The experimental results are presented and discussed in section 4. Conclusions are in section 5.
  • Related Articles

    [1]Wei Jinxia, Long Chun, Fu Hao, Gong Liangyi, Zhao Jing, Wan Wei, Huang Pan. Malicious Domain Name Detection Method Based on Enhanced Embedded Feature Hypergraph Learning[J]. Journal of Computer Research and Development, 2024, 61(9): 2334-2346. DOI: 10.7544/issn1000-1239.202330117
    [2]Guo Yingjie, Liu Xiaoyan, Wu Chenxi, Guo Maozu, Li Ao. U-Statistics and Ensemble Learning Based Method for Gene-Gene Interaction Detection[J]. Journal of Computer Research and Development, 2018, 55(8): 1683-1693. DOI: 10.7544/issn1000-1239.2018.20180365
    [3]Liu Qiao, Han Minghao, Yang Xiaohui, Liu Yao, Wu Zufeng. Representation Learning Based Relational Inference Algorithm with Semantical Aspect Awareness[J]. Journal of Computer Research and Development, 2017, 54(8): 1682-1692. DOI: 10.7544/issn1000-1239.2017.20170200
    [4]Wang Youwei, Wang Weiping, Meng Dan. Query Optimization by Statistical Approach for Hive Data Warehouse[J]. Journal of Computer Research and Development, 2015, 52(6): 1452-1462. DOI: 10.7544/issn1000-1239.2015.20140403
    [5]Zhang Yingjie, Gong Zhonghan. Hybrid Differential Evolution Gravitation Search Algorithm Based on Threshold Statistical Learning[J]. Journal of Computer Research and Development, 2014, 51(10): 2187-2194. DOI: 10.7544/issn1000-1239.2014.20130395
    [6]Wu Yan, Zhang Qi, and Huang Xuanjing. Selecting Expansion Terms as a Set Via Integer Linear Programming[J]. Journal of Computer Research and Development, 2013, 50(8): 1737-1743.
    [7]Pu Qiang, He Daqing, Yang Guowei. An Estimation of Query Language Model Based on Statistical Semantic Clustering[J]. Journal of Computer Research and Development, 2011, 48(2): 224-231.
    [8]Liu Dayou, Yu Peng, Gao Ying, Qi Hong, and Sun Shuyang. Research Progress in Statistical Relational Learning[J]. Journal of Computer Research and Development, 2008, 45(12): 2110-2119.
    [9]Zhou Hongwei, Zhang Chengyi, and Zhang Minxuan. A Method of Statistics-Based Cache Leakage Power Estimation[J]. Journal of Computer Research and Development, 2008, 45(2): 367-374.
    [10]Xu Cunlu, Chen Yanqiu, Lu Hanqing. Statistical Landscape Features for Texture Retrieval[J]. Journal of Computer Research and Development, 2006, 43(4): 702-707.

Catalog

    Article views (651) PDF downloads (537) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return