• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chi Lihua, Liu jie, and Hu Qingfeng. Evaluation and Test for Scalability of Numerical Parallel Computation[J]. Journal of Computer Research and Development, 2005, 42(6): 1073-1078.
Citation: Chi Lihua, Liu jie, and Hu Qingfeng. Evaluation and Test for Scalability of Numerical Parallel Computation[J]. Journal of Computer Research and Development, 2005, 42(6): 1073-1078.

Evaluation and Test for Scalability of Numerical Parallel Computation

More Information
  • Published Date: June 14, 2005
  • In this paper, the existing problems of the current scalability models are analyzed, and aiming at the requirements of the practical evaluations and tests, a practical scalability metric based on iso-average-computation-load is proposed to provide a quantitative measurement of the scalability. In this metric, the definitions of scalable speedup and scalability are different from the current metrics. By using this metric, a practical method can be obtained to test scalable speedup and scalability, and combined with curve fitting or parallel computing time model, the scalabilities of parallel systems can be predicted.
  • Related Articles

    [1]Shi Leyi, Zhu Hongqiang, Liu Yihao, Liu Jia. Intrusion Detection of Industrial Control System Based on Correlation Information Entropy and CNN-BiLSTM[J]. Journal of Computer Research and Development, 2019, 56(11): 2330-2338. DOI: 10.7544/issn1000-1239.2019.20190376
    [2]Yao Sheng, Xu Feng, Zhao Peng, Ji Xia. Intuitionistic Fuzzy Entropy Feature Selection Algorithm Based on Adaptive Neighborhood Space Rough Set Model[J]. Journal of Computer Research and Development, 2018, 55(4): 802-814. DOI: 10.7544/issn1000-1239.2018.20160919
    [3]Dong Hongbin, Teng Xuyang, Yang Xue. Feature Selection Based on the Measurement of Correlation Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(8): 1684-1695. DOI: 10.7544/issn1000-1239.2016.20160172
    [4]Tang Chenghua, Liu Pengcheng, Tang Shensheng, Xie Yi. Anomaly Intrusion Behavior Detection Based on Fuzzy Clustering and Features Selection[J]. Journal of Computer Research and Development, 2015, 52(3): 718-728. DOI: 10.7544/issn1000-1239.2015.20130601
    [5]Zhang Fengbin and Wang Tianbo. Real Value Negative Selection Algorithm with the n-Dimensional Chaotic Map[J]. Journal of Computer Research and Development, 2013, 50(7): 1387-1398.
    [6]Zhang Zhenhai, Li Shining, Li Zhigang, and Chen Hao. Multi-Label Feature Selection Algorithm Based on Information Entropy[J]. Journal of Computer Research and Development, 2013, 50(6): 1177-1184.
    [7]Zheng Liming, Zou Peng, Han Weihong, Li Aiping, Jia Yan. Traffic Anomaly Detection Using Multi-Dimensional Entropy Classification in Backbone Network[J]. Journal of Computer Research and Development, 2012, 49(9): 1972-1981.
    [8]Zhang Xiang, Deng Zhaohong, Wang Shitong, Choi Kupsze. Maximum Entropy Relief Feature Weighting[J]. Journal of Computer Research and Development, 2011, 48(6): 1038-1048.
    [9]Chen Shitao, Chen Guolong, Guo Wenzhong, and Liu Yanhua. Feature Selection of the Intrusion Detection Data Based on Particle Swarm Optimization and Neighborhood Reduction[J]. Journal of Computer Research and Development, 2010, 47(7): 1261-1267.
    [10]Hou Jian, Peng Jiayin, Zhang Yuzhuo, Zhang Chengyi. A Reverse Triple I Algorithm for Fuzzy Reasoning Based on Maximum Fuzzy Entropy Principle[J]. Journal of Computer Research and Development, 2006, 43(7): 1180-1185.

Catalog

    Article views (955) PDF downloads (943) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return