• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Zhiming, Cai Lianhong, Ai Haizhou. Automatic Estimation of Visual Speech Parameters[J]. Journal of Computer Research and Development, 2005, 42(7): 1185-1190.
Citation: Wang Zhiming, Cai Lianhong, Ai Haizhou. Automatic Estimation of Visual Speech Parameters[J]. Journal of Computer Research and Development, 2005, 42(7): 1185-1190.

Automatic Estimation of Visual Speech Parameters

More Information
  • Published Date: July 14, 2005
  • Visual speech parameter estimation has an important role in the study of visual speech. In this paper, 24 speech correlating parameters are selected from MPEG-4 defined facial animation parameter (FAP) to describe visual speech. Combining the statistic learning method and rule based method, precise tracking results are obtained for mouth contour and facial feature points based on facial color probability distribution and priori knowledge on shape and edge. High frequency noise in reference points tracking is eliminated by low-pass filter, and main face pose is estimated from the four most evident reference points to remove the overall movements of the face. Finally, precise visual speech parameters are computed from the movement of these facial feature points, and these parameters have already been used in some related applications.
  • Related Articles

    [1]Shi Leyi, Zhu Hongqiang, Liu Yihao, Liu Jia. Intrusion Detection of Industrial Control System Based on Correlation Information Entropy and CNN-BiLSTM[J]. Journal of Computer Research and Development, 2019, 56(11): 2330-2338. DOI: 10.7544/issn1000-1239.2019.20190376
    [2]Yao Sheng, Xu Feng, Zhao Peng, Ji Xia. Intuitionistic Fuzzy Entropy Feature Selection Algorithm Based on Adaptive Neighborhood Space Rough Set Model[J]. Journal of Computer Research and Development, 2018, 55(4): 802-814. DOI: 10.7544/issn1000-1239.2018.20160919
    [3]Dong Hongbin, Teng Xuyang, Yang Xue. Feature Selection Based on the Measurement of Correlation Information Entropy[J]. Journal of Computer Research and Development, 2016, 53(8): 1684-1695. DOI: 10.7544/issn1000-1239.2016.20160172
    [4]Tang Chenghua, Liu Pengcheng, Tang Shensheng, Xie Yi. Anomaly Intrusion Behavior Detection Based on Fuzzy Clustering and Features Selection[J]. Journal of Computer Research and Development, 2015, 52(3): 718-728. DOI: 10.7544/issn1000-1239.2015.20130601
    [5]Zhang Fengbin and Wang Tianbo. Real Value Negative Selection Algorithm with the n-Dimensional Chaotic Map[J]. Journal of Computer Research and Development, 2013, 50(7): 1387-1398.
    [6]Zhang Zhenhai, Li Shining, Li Zhigang, and Chen Hao. Multi-Label Feature Selection Algorithm Based on Information Entropy[J]. Journal of Computer Research and Development, 2013, 50(6): 1177-1184.
    [7]Zheng Liming, Zou Peng, Han Weihong, Li Aiping, Jia Yan. Traffic Anomaly Detection Using Multi-Dimensional Entropy Classification in Backbone Network[J]. Journal of Computer Research and Development, 2012, 49(9): 1972-1981.
    [8]Zhang Xiang, Deng Zhaohong, Wang Shitong, Choi Kupsze. Maximum Entropy Relief Feature Weighting[J]. Journal of Computer Research and Development, 2011, 48(6): 1038-1048.
    [9]Chen Shitao, Chen Guolong, Guo Wenzhong, and Liu Yanhua. Feature Selection of the Intrusion Detection Data Based on Particle Swarm Optimization and Neighborhood Reduction[J]. Journal of Computer Research and Development, 2010, 47(7): 1261-1267.
    [10]Hou Jian, Peng Jiayin, Zhang Yuzhuo, Zhang Chengyi. A Reverse Triple I Algorithm for Fuzzy Reasoning Based on Maximum Fuzzy Entropy Principle[J]. Journal of Computer Research and Development, 2006, 43(7): 1180-1185.

Catalog

    Article views (664) PDF downloads (393) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return