• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Mao Guojun and Zong Dongjun. An Intrusion Detection Model Based on Mining Multi-Dimension Data Streams[J]. Journal of Computer Research and Development, 2009, 46(4): 602-609.
Citation: Mao Guojun and Zong Dongjun. An Intrusion Detection Model Based on Mining Multi-Dimension Data Streams[J]. Journal of Computer Research and Development, 2009, 46(4): 602-609.

An Intrusion Detection Model Based on Mining Multi-Dimension Data Streams

More Information
  • Published Date: April 14, 2009
  • Network data are always high-speed and unlimited. Typical data mining methods, which always do multi-scanning to databases, do not fit in with constructing intrusion detection model for high-speed network data streams. Proposed in this paper is a new intrusion detection model based on mining multi-dimension data streams. It combines anomaly detection mechanisms with misuse detection techniques, and thus it can mine new attack types as well as anomaly detection techniques do, and has a high detection efficiency like the misuse detection mechanism. In fact, a network access data stream has a complex structure, that is, an accessing behavior always needs a lot of attributes to express, and so analyzing a network access data stream is a hard work. Through using the multi-frequency technique, this paper solves the problems of pattern expression and generation for network access data streams. A new data structure called MaxFP-Tree is proposed, and a new algorithm called MaxFPinNDS to mime frequent patterns from data streams is designed. Due to using damped window techniques, the algorithm MaxFPinNDS can efficiently and effectively find out maximal frequent itemsets in recent period of a data stream. The experiment results show that the proposed algorithms and models are very effective to intrusion detection on network.
  • Related Articles

    [1]Ji Zhong, Nie Linhong. Texture Image Classification with Noise-Tolerant Local Binary Pattern[J]. Journal of Computer Research and Development, 2016, 53(5): 1128-1135. DOI: 10.7544/issn1000-1239.2016.20148320
    [2]Lu Daying, Zhu Dengming, Wang Zhaoqi. Texture-Based Multiresolution Flow Visualization[J]. Journal of Computer Research and Development, 2015, 52(8): 1910-1920. DOI: 10.7544/issn1000-1239.2015.20140417
    [3]Wang Huafeng, Wang Yuting, Chai Hua. State-of-the-Art on Texture-Based Well Logging Image Classification[J]. Journal of Computer Research and Development, 2013, 50(6): 1335-1348.
    [4]Zhong Hua,Yang Xiaoming, and Jiao Licheng. Texture Classification Based on Multiresolution Co-occurrence Matrix[J]. Journal of Computer Research and Development, 2011, 48(11): 1991-1999.
    [5]Xiong Changzhen, Huang Jing, Qi Dongxu. Irregular Patch for Texture Synthesis[J]. Journal of Computer Research and Development, 2007, 44(4): 701-706.
    [6]Li Jie, Zhu Weile, Wang Lei. Texture Recognition Using the Wold Model and Support Vector Machines[J]. Journal of Computer Research and Development, 2007, 44(3).
    [7]Xu Cunlu, Chen Yanqiu, Lu Hanqing. Statistical Landscape Features for Texture Retrieval[J]. Journal of Computer Research and Development, 2006, 43(4): 702-707.
    [8]Yang Gang, Wang Wencheng, Wu Enhua. Texture Synthesis by the Border Image[J]. Journal of Computer Research and Development, 2005, 42(12): 2118-2125.
    [9]Shang Zhaowei, Zhang Mingxin, Zhao Ping, Shen Junyi. Different Complex Wavelet Transforms for Texture Retrieval and Similarity Measure[J]. Journal of Computer Research and Development, 2005, 42(10): 1746-1751.
    [10]Zhang Yan, Li Wenhui, Meng Yu, and Pang Yunjie. Fast Texture Synthesis Algorithm Using PSO[J]. Journal of Computer Research and Development, 2005, 42(3).

Catalog

    Article views (732) PDF downloads (935) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return