• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Biao, Zhang Fangjiao, Wang Wenxin, Xie Kang, Zhang Jianyi. A Byzantine-Robust Federated Learning Algorithm Based on Matrix Mapping[J]. Journal of Computer Research and Development, 2021, 58(11): 2416-2429. DOI: 10.7544/issn1000-1239.2021.20210633
Citation: Liu Biao, Zhang Fangjiao, Wang Wenxin, Xie Kang, Zhang Jianyi. A Byzantine-Robust Federated Learning Algorithm Based on Matrix Mapping[J]. Journal of Computer Research and Development, 2021, 58(11): 2416-2429. DOI: 10.7544/issn1000-1239.2021.20210633

A Byzantine-Robust Federated Learning Algorithm Based on Matrix Mapping

Funds: This work was supported by the National Key Research and Development Program of China (2018YFB1004100), the Opening Project of Key Lab of Information Network Security of Ministry of Public Security (The Third Research Institute of Ministry of Public Security) (C18612), and the Project of CAS Key Laboratory of Network Assessment Technology (Institute of Information Engineering, Chinese Academy of Sciences) (KFKT2019-004).
More Information
  • Published Date: October 31, 2021
  • Federated learning can better protect data privacy because the parameter server only collects the client model and does not touch the local data of the client. However, its basic aggregation algorithm FedAvg is vulnerable to Byzantine client attacks. In response to this problem, many studies have proposed different aggregation algorithms, but these aggregation algorithms have insufficient defensive capabilities, and the model assumptions do not fit the reality. Therefore, we propose a new type of Byzantine robust aggregation algorithm. Different from the existing aggregation algorithms, our algorithm focuses on detecting the probability distribution of the Softmax layer. Specifically, after collecting the client model, the parameter server obtains the Softmax layer probability distribution of the model through the generated matrix to map the updated part of the model, and eliminates the client model with abnormal distribution. The experimental results show that without reducing the accuracy of FedAvg, the Byzantine tolerance rate is increased from 40% to 45% in convergence prevention attacks, and the defense against edge-case backdoor attacks is realized in backdoor attacks. In addition, according to the current state-of-the-art adaptive attack framework, an adaptive attack is designed specifically for our algorithm, and experimental evaluations have been carried out. The experimental results show that our aggregation algorithm can defend at least 30% of Byzantine clients.
  • Related Articles

    [1]Liu Jialang, Guo Yanming, Lao Mingrui, Yu Tianyuan, Wu Yulun, Feng Yunhao, Wu Jiazhuang. Survey of Backdoor Attack and Defense Algorithms Based on Federated Learning[J]. Journal of Computer Research and Development, 2024, 61(10): 2607-2626. DOI: 10.7544/issn1000-1239.202440487
    [2]Zhu Suxia, Wang Jinyin, Sun Guanglu. Perceptual Similarity-Based Multi-Objective Optimization for Stealthy Image Backdoor Attack[J]. Journal of Computer Research and Development, 2024, 61(5): 1182-1192. DOI: 10.7544/issn1000-1239.202330521
    [3]Zhang Runlian, Pan Zhaoxuan, Li Jinlin, Wu Xiaonian, Wei Yongzhuang. A Side Channel Attack Based on Multi-Source Data Aggregation Neural Network[J]. Journal of Computer Research and Development, 2024, 61(1): 261-270. DOI: 10.7544/issn1000-1239.202220172
    [4]Zheng Mingyu, Lin Zheng, Liu Zhengxiao, Fu Peng, Wang Weiping. Survey of Textual Backdoor Attack and Defense[J]. Journal of Computer Research and Development, 2024, 61(1): 221-242. DOI: 10.7544/issn1000-1239.202220340
    [5]Chen Jingxue, Gao Kehan, Zhou Erqiang, Qin Zhen. Robust Source Anonymous Federated Learning Shuffle Protocol in IoT[J]. Journal of Computer Research and Development, 2023, 60(10): 2218-2233. DOI: 10.7544/issn1000-1239.202330393
    [6]Zhang Zhenyu, Jiang Yuan. Label Noise Robust Learning Algorithm in Environments Evolving Features[J]. Journal of Computer Research and Development, 2023, 60(8): 1740-1753. DOI: 10.7544/issn1000-1239.202330238
    [7]Chen Dawei, Fu Anmin, Zhou Chunyi, Chen Zhenzhu. Federated Learning Backdoor Attack Scheme Based on Generative Adversarial Network[J]. Journal of Computer Research and Development, 2021, 58(11): 2364-2373. DOI: 10.7544/issn1000-1239.2021.20210659
    [8]Zheng Haibin, Chen Jinyin, Zhang Yan, Zhang Xuhong, Ge Chunpeng, Liu Zhe, Ouyang Yike, Ji Shouling. Survey of Adversarial Attack, Defense and Robustness Analysis for Natural Language Processing[J]. Journal of Computer Research and Development, 2021, 58(8): 1727-1750. DOI: 10.7544/issn1000-1239.2021.20210304
    [9]Jin Jun and Zhang Daoqiang. Semi-Supervised Robust On-Line Clustering Algorithm[J]. Journal of Computer Research and Development, 2008, 45(3): 496-502.
    [10]Hu Yusuo and Chen Zonghai. A Novel Robust Estimation Algorithm Based on Linear EIV Model[J]. Journal of Computer Research and Development, 2006, 43(3): 483-488.
  • Cited by

    Periodical cited type(13)

    1. 涂彬彬,陈宇. 支持批量证明的SM2适配器签名及其分布式扩展. 软件学报. 2024(05): 2566-2582 .
    2. 胡小明,陈海婵. 可证明安全的SM2盲适配器签名方案. 网络与信息安全学报. 2024(02): 59-68 .
    3. 唐锴令,郑皓. 融合DES和ECC算法的物联网隐私数据加密方法. 吉林大学学报(信息科学版). 2024(03): 496-502 .
    4. 薛庆水,卢子譞,马海峰,高永福,谈成龙,孙晨曦. 基于SM2的强前向安全性两方共同签名方案. 计算机工程与设计. 2024(08): 2290-2297 .
    5. 张艳硕,刘宁,袁煜淇,杨亚涛. 基于ISRSAC数字签名算法的适配器签名方案. 通信学报. 2023(03): 178-185 .
    6. 陈海婵,郭智浩,王俊以,胡小明. 基于适配器签名和盲混技术的电子资源交易方案设计与实现. 上海第二工业大学学报. 2023(01): 53-60 .
    7. 韦薇,罗敏,白野,彭聪,何德彪. 基于SIMD指令集的SM2数字签名算法快速实现. 密码学报. 2023(04): 720-736 .
    8. 白野,何德彪,罗敏,杨智超,彭聪. 一种针对SM2数字签名算法的攻击方案. 密码学报. 2023(04): 823-835 .
    9. 夏再琦,王祥,白鹏飞,易玲,郭艳鹏,宋绍华. 智能终端的Uboot引导应用程序实现方法. 单片机与嵌入式系统应用. 2023(10): 57-60 .
    10. 刘捷. 基于鸿蒙的新一代智能POS业务软件设计. 电子元器件与信息技术. 2023(12): 32-35 .
    11. 苏簪铀,马振华,王志洋. 基于协同签名的电网移动GIS签名系统的设计与实现. 农村电气化. 2022(04): 50-53 .
    12. 王子瑞,张驰,魏凌波. 基于双线性配对的适配器签名方案. 密码学报. 2022(04): 686-697 .
    13. 李松钊,梁晓芳,李文敬. 基于零知识验证签名的食品供应链追溯算法研究. 南宁师范大学学报(自然科学版). 2022(04): 49-56 .

    Other cited types(10)

Catalog

    Article views (611) PDF downloads (542) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return