• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhou Chunyi, Chen Dawei, Wang Shang, Fu Anmin, Gao Yansong. Research and Challenge of Distributed Deep Learning Privacy and Security Attack[J]. Journal of Computer Research and Development, 2021, 58(5): 927-943. DOI: 10.7544/issn1000-1239.2021.20200966
Citation: Zhou Chunyi, Chen Dawei, Wang Shang, Fu Anmin, Gao Yansong. Research and Challenge of Distributed Deep Learning Privacy and Security Attack[J]. Journal of Computer Research and Development, 2021, 58(5): 927-943. DOI: 10.7544/issn1000-1239.2021.20200966

Research and Challenge of Distributed Deep Learning Privacy and Security Attack

Funds: This work was supported by the National Natural Science Foundation of China (62072239, 62002167), the Guangxi Key Laboratory of Trusted Software (KX202029), and the Fundamental Research Funds for the Central Universities (30920021129).
More Information
  • Published Date: April 30, 2021
  • Different from the centralized deep learning mode, distributed deep learning gets rid of the limitation that the data must be centralized during the model training process, which realizes the local operation of the data, and allows all participants to collaborate without exchanging data. It significantly reduces the risk of user privacy leakage, breaks the data island from the technical level, and improves the efficiency of deep learning. Distributed deep learning can be widely used in smart medical care, smart finance, smart retail and smart transportation. However, typical attacks such as generative adversarial network attacks, membership inference attacks and backdoor attacks, have revealed that distributed deep learning still has serious privacy vulnerabilities and security threats. This paper first compares and analyzes the characteristics of the three distributed deep learning modes and their core problems, including collaborative learning, federated learning and split learning. Secondly, from the perspective of privacy attacks, it comprehensively expounds various types of privacy attacks faced by distributed deep learning, and summarizes the existing privacy attack defense methods. At the same time, from the perspective of security attacks, the paper analyzes the attack process and inherent security threats of the three security attacks: data poisoning attacks, adversarial sample attacks, and backdoor attacks, and analyzes the existing security attack defense technology from the perspectives of defense principles, adversary capabilities, and defense effects. Finally, from the perspective of privacy and security attacks, the future research directions of distributed deep learning are discussed and prospected.
  • Related Articles

    [1]Qian Zhongsheng, Huang Heng, Zhu Hui, Liu Jinping. Multi-Perspective Graph Contrastive Learning Recommendation Method with Layer Attention Mechanism[J]. Journal of Computer Research and Development, 2025, 62(1): 160-178. DOI: 10.7544/issn1000-1239.202330804
    [2]Wei Shaopeng, Liang Ting, Zhao Yu, Zhuang Fuzhen, Ren Fuji. Multi-View Heterogeneous Graph Neural Network Method for Enterprise Credit Risk Assessment[J]. Journal of Computer Research and Development, 2024, 61(8): 1957-1967. DOI: 10.7544/issn1000-1239.202440126
    [3]Yang Jieyi, Dong Yihong, Qian Jiangbo. Research Progress of Few-Shot Learning Methods Based on Graph Neural Networks[J]. Journal of Computer Research and Development, 2024, 61(4): 856-876. DOI: 10.7544/issn1000-1239.202220933
    [4]Ye Guixin, Zhang Yuxiang, Zhang Cheng, Zhao Jiaqi, Wang Huanting. Automatic Optimization Heuristics Method for OpenCL Program Based on Graph Neural Network[J]. Journal of Computer Research and Development, 2023, 60(5): 1121-1135. DOI: 10.7544/issn1000-1239.202110943
    [5]Huang Heyan, Liu Xiao, Liu Qian. Knowledge-Enhanced Graph Encoding Method for Metaphor Detection in Text[J]. Journal of Computer Research and Development, 2023, 60(1): 140-152. DOI: 10.7544/issn1000-1239.202110927
    [6]Xie Xiaojie, Liang Ying, Wang Zisen, Liu Zhengjun. Heterogeneous Network Node Classification Method Based on Graph Convolution[J]. Journal of Computer Research and Development, 2022, 59(7): 1470-1485. DOI: 10.7544/issn1000-1239.20210124
    [7]Liu Linlan, Tan Zhenyang, Shu Jian. Node Importance Estimation Method for Opportunistic Network Based on Graph Neural Networks[J]. Journal of Computer Research and Development, 2022, 59(4): 834-851. DOI: 10.7544/issn1000-1239.20200673
    [8]Sun Yawei, Cheng Gong, Li Xiao, Qu Yuzhong. Graph Matching Network for Interpretable Complex Question Answering over Knowledge Graphs[J]. Journal of Computer Research and Development, 2021, 58(12): 2673-2683. DOI: 10.7544/issn1000-1239.2021.20211004
    [9]Chen Jinyin, Huang Guohan, Zhang Dunjie, Zhang Xuhong, Ji Shouling. GRD-GNN: Graph Reconstruction Defense for Graph Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1075-1091. DOI: 10.7544/issn1000-1239.2021.20200935
    [10]Wu Jinyu, Jin Shuyuan, Yang Zhi. Analysis of Attack Graphs Based on Network Flow Method[J]. Journal of Computer Research and Development, 2011, 48(8): 1497-1505.

Catalog

    Article views (1667) PDF downloads (1458) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return