• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Mo Huiling, Zheng Haifeng, Gao Min, Feng Xinxin. Multi-Source Heterogeneous Data Fusion Based on Federated Learning[J]. Journal of Computer Research and Development, 2022, 59(2): 478-487. DOI: 10.7544/issn1000-1239.20200668
Citation: Mo Huiling, Zheng Haifeng, Gao Min, Feng Xinxin. Multi-Source Heterogeneous Data Fusion Based on Federated Learning[J]. Journal of Computer Research and Development, 2022, 59(2): 478-487. DOI: 10.7544/issn1000-1239.20200668

Multi-Source Heterogeneous Data Fusion Based on Federated Learning

Funds: This work was supported by the National Natural Science Foundation of China (61971139).
More Information
  • Published Date: January 31, 2022
  • With the rapid development of technology, the number of network edge devices with the capability of computation and memory is increasing, and the volume of the generated data is growing exponentially, which makes it difficult for a centralized processing model with cloud computing as the core to efficiently process data generated by edge devices. Not only will the network delay increase, but the data is likely to be leaked on the upload link, and data security cannot be guaranteed. In addition, due to the diversity of edge devices and the continuous enrichment of data representation methods, multi-modal data exists widely. The processing of multi-source heterogeneous data collected by different edge devices has become an urgent problem in big data research. In order to make full use of heterogeneous data on edge devices and solve the problem of “data communication barriers” caused by data privacy in edge computing, in this paper we propose a novel fusion algorithm for multi-source heterogeneous data based on Tucker decomposition in federated learning. For the fusion problem of heterogeneous data without interaction in federated learning, the proposed algorithm introduces Tucker decomposition theory to capture the multi-dimensional characteristics of heterogeneous data by constructing a high-order tensor. Finally, the effectiveness of this algorithm is verified on the MOSI dataset.
  • Related Articles

    [1]Gu Beibei, Qiu Jiyan, Wang Ning, Chen Jian, Chi Xuebin. A Performance Data Collection Method for Computing Software in Heterogeneous Systems[J]. Journal of Computer Research and Development. DOI: 10.7544/issn1000-1239.202440512
    [2]Wang Beilun, Zhang Jiaqi, Cai Yinghao, Wang Zhaoyang, Tan Xiao, Shen Dian. High-Order Tensor Analysis Method for Information System Recommendations and Decisions[J]. Journal of Computer Research and Development, 2024, 61(7): 1697-1712. DOI: 10.7544/issn1000-1239.202330624
    [3]Zhong Zhengyi, Bao Weidong, Wang Ji, Wu Guanlin, Zhao Xiang. A Hierarchically Heterogeneous Federated Learning Method for Cloud-Edge-End System[J]. Journal of Computer Research and Development, 2022, 59(11): 2408-2422. DOI: 10.7544/issn1000-1239.20220458
    [4]Wu Yao, Shen Derong, Kou Yue, Nie Tiezheng, Yu Ge. Heterogeneous Information Networks Embedding Based on Multiple Meta-Graph Fusion[J]. Journal of Computer Research and Development, 2020, 57(9): 1928-1938. DOI: 10.7544/issn1000-1239.2020.20190553
    [5]Guo Shuai, Guo Zhongwen, Qiu Zhijin. HSMA: Hierarchical Schema Matching Algorithm for IoT Heterogeneous Data[J]. Journal of Computer Research and Development, 2018, 55(11): 2522-2531. DOI: 10.7544/issn1000-1239.2018.20170664
    [6]Xu Zhiwei, Zhang Yujun. Efficient Detection of False Data Fusion in IoT[J]. Journal of Computer Research and Development, 2018, 55(7): 1488-1497. DOI: 10.7544/issn1000-1239.2018.20180123
    [7]Xue Jianxin, Shen Derong, Kou Yue, Nie Tiezheng, Yu Ge. Semiring Provenance for Data Fusion[J]. Journal of Computer Research and Development, 2016, 53(2): 316-325. DOI: 10.7544/issn1000-1239.2016.20150872
    [8]Meng Xiaofeng, Du Zhijuan. Research on the Big Data Fusion: Issues and Challenges[J]. Journal of Computer Research and Development, 2016, 53(2): 231-246. DOI: 10.7544/issn1000-1239.2016.20150874
    [9]Chen Zhenyong, Xu Zhouchuan, Li Qingguang, Lü Weifeng, Xiong Zhang. A Novel Framework of Data Sharing and Fusion in Smart City—SCLDF[J]. Journal of Computer Research and Development, 2014, 51(2): 290-301.
    [10]Xu Wei, Huang Houkuan, Wang Yingjie. An Integrated Spatio-Temporal Forecasting Approach Based on Data Fusion and Method Fusion[J]. Journal of Computer Research and Development, 2005, 42(7): 1255-1260.
  • Cited by

    Periodical cited type(33)

    1. 崔跃君,张浩海,王昊,王磊,顾新桥. 智能电网多智能体信息自动化融合模型构建. 自动化技术与应用. 2025(01): 110-114 .
    2. 陈斌,陈郑平,李泽科,郭久煜,范海威,李军良. 多图层模型下电网调度空间异构数据特征融合. 电子设计工程. 2025(05): 162-165+171 .
    3. 卜令朵. 基于关系代数的高校门户网站数据传输异构数据聚合方法. 自动化技术与应用. 2025(03): 79-83 .
    4. 闫佳和,李红辉,马英,刘真,张大林,江周娴,段宇航. 多源异构数据融合关键技术与政务大数据治理体系. 计算机科学. 2024(02): 1-14 .
    5. 杨晶,妥建军,李昊,廖翯,马雅蓉. 电网多源异构缺失数据最优投影整合算法研究. 自动化仪表. 2024(04): 76-81 .
    6. 王尧,邵晶晶,宋云奎. 基于决策粗糙集模型的电网多源异构数据整合. 电子设计工程. 2024(10): 140-144 .
    7. 李鑫,梁永玲. 基于模糊数学的多源异构数据融合模型. 吉林大学学报(理学版). 2024(03): 691-696 .
    8. 靳荣博,许春堂,林付利,褚建国,李金峰. 面向产品全生命周期数据融通的工业主线研究. 智能制造. 2024(03): 68-74 .
    9. 郝亚平. 基于滑动聚类的窄带物联网特征级异构数据融合方法. 微型电脑应用. 2024(07): 234-237 .
    10. 唐晓岚,梁煜婷,陈文龙. 面向非独立同分布数据的车联网多阶段联邦学习机制. 计算机研究与发展. 2024(09): 2170-2184 . 本站查看
    11. 绳鹏程. 基于多源数据融合的地铁隧道断面收敛精准测量研究. 广东交通职业技术学院学报. 2024(03): 15-20+39 .
    12. 郑灶贤. 多源异构高维数据特征加权子空间聚类算法. 电子设计工程. 2024(20): 191-195 .
    13. 赵峻岭,梁峰,陈琳. 基于联邦学习的自助取货机远程下单数据共享方法. 计算技术与自动化. 2024(03): 141-147 .
    14. 陈一帆,张志强,丁敬达,谢瑞霞. 图书情报领域多源数据特征级融合方法研究综述. 图书情报工作. 2024(18): 134-146 .
    15. 杨秋菊. 基于模糊理论的多源异构传感器数据融合模型. 吉林大学学报(工学版). 2024(10): 3058-3063 .
    16. 翁东雷,王露民,莫建国,唐金祥,卢俊. 基于迭代模糊聚类算法的多源异构电力数据集成. 电子设计工程. 2024(23): 150-154 .
    17. 李洵,纪元,张盛春. 面向数字孪生的输变电设备多源异构数据自动采集方法. 自动化技术与应用. 2024(12): 139-142+171 .
    18. 陈宏,蒋文贤,黄丽萍,余翀翀. 无线传感网络多源数据特征融合方法研究. 传感技术学报. 2024(12): 2131-2136 .
    19. 尹春勇,屈锐. 基于个性化差分隐私的联邦学习算法. 计算机应用. 2023(04): 1160-1168 .
    20. 张文健. 基于数学技术和信息技术的数据融合方法. 广州城市职业学院学报. 2023(02): 92-95+100 .
    21. 郝戌京,李方一. 基于联邦学习的光伏电站发电效率对比与低效诊断研究. 电力大数据. 2023(03): 28-36 .
    22. 谭如超,何群,王华,周欣,肖辉. 异构网络通信数据融合方法研究. 自动化仪表. 2023(07): 50-54+60 .
    23. 江河,李晓茹,孙敏. 物联网下多无线传感网络中不同信道信息融合方法. 传感技术学报. 2023(06): 972-977 .
    24. 陈超,胡才亮,崔钰,谢芳,杨慧芳,王健. 基于时空聚类的多源异构时序数据集成方法. 电子设计工程. 2023(20): 168-171+176 .
    25. 程雪婷,王玮茹,暴悦爽,薄利明. 基于联邦学习的多源异构数据安全融合方法. 通信技术. 2023(10): 1173-1183 .
    26. 邬忠萍,郝宗波,王文静,刘冬. 结合联邦学习和增强学习的车联网数据差分隐私保护. 汽车技术. 2023(11): 56-62 .
    27. 刘沛津,王柳月,孙昱,史洁琳,晏东阳. 基于一致性哈希算法的分布式机电系统海量数据存储策略研究. 机床与液压. 2023(22): 31-38 .
    28. 李哲,董玉山,浦绍文,周思成,张华生. 基于BN算法的电力调度多源故障数据融合系统. 电子设计工程. 2023(23): 17-21 .
    29. 唐茜,卢燕,秦鹏,田艳. 改进一致性算法的供应链信息共享方法仿真. 计算机仿真. 2023(11): 466-469+479 .
    30. 李麟,王伟. 基于改进RNN多源融合算法的网络异构信息集成管理系统. 西安工程大学学报. 2023(06): 145-152 .
    31. 张玉龙. 基于多元异构网络安全数据可视化融合分析方法. 电子技术与软件工程. 2022(15): 5-8 .
    32. 吴文炤,李炳森,聂玲,程红星,梁子寒. 基于人工智能的元数据关系研究. 电力信息与通信技术. 2022(09): 43-50 .
    33. 李莉,张建平,杨冀红. 国土空间规划实施监测总体思路与关键技术研究的思考. 地理信息世界. 2022(05): 49-53+60 .

    Other cited types(27)

Catalog

    Article views (1635) PDF downloads (734) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return