• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Chen Yarui, Yang Jucheng, Shi Yancui, Wang Yuan, Zhao Tingting. Survey of Variational Inferences in Probabilistic Generative Models[J]. Journal of Computer Research and Development, 2022, 59(3): 617-632. DOI: 10.7544/issn1000-1239.20200637
Citation: Chen Yarui, Yang Jucheng, Shi Yancui, Wang Yuan, Zhao Tingting. Survey of Variational Inferences in Probabilistic Generative Models[J]. Journal of Computer Research and Development, 2022, 59(3): 617-632. DOI: 10.7544/issn1000-1239.20200637

Survey of Variational Inferences in Probabilistic Generative Models

Funds: This work was supported by the National Natural Science Foundation of China (61976156, 61702367), the Tianjin Natural Science Foundation (18JCQNJC69800), and the Youth Scholars Foundation of Tianjin University of Science and Technology (2017LG10).
More Information
  • Published Date: February 28, 2022
  • Probabilistic generative models are important methods for knowledge representation. Exact probabilistic inference methods are intractable in these models, and various approximate inferences are required. The variational inferences are important deterministic approximate inference methods with rapid convergence and solid theoretical foundations, and they have become the research hot in probabilistic generative models with the development of big data especially. In this paper, we first present a general variational inference framework for probabilistic generative models, and analyze the parameter learning process of the models based on variational inference. Then, we give the framework of analytic optimization of variational inference for the conditionally conjugated exponential family, and introduce the stochastic variational inference based on the framework, which can scale to big data with the stochastic strategy. Furthermore, we provide the framework of black box variational inferences for the general probability generative models, which train the model parameters of variational distributions based on the stochastic gradients; and analyze the realization of different variational inference algorithms under the framework. Finally, we summarize the structured variational inferences, which improve the inference accuracy by enriching the variational distributions with different strategies. In addition, we discuss the further development trends of variational inference for probabilistic generative models.
  • Cited by

    Periodical cited type(6)

    1. 王博,万良,叶金贤,刘明盛,孙菡迪. 融合稀疏注意力机制在DDoS攻击检测中的应用. 计算机工程与设计. 2024(05): 1312-1320 .
    2. 刘泽坤,宫鑫,刘秀,安龙,吕延滨,刘欣. 基于电力数据中台的行为审计工具建设. 电力大数据. 2024(02): 62-68 .
    3. 崔峻玮,翟亚红. 近邻成分分析下的DDoS攻击检测. 湖北汽车工业学院学报. 2023(02): 36-41 .
    4. 冯景瑜,张静,时翌飞. 物联网中具备终端匿名的加密流量双层过滤方法. 西安邮电大学学报. 2023(02): 72-81 .
    5. 王冲,魏子令,陈曙晖. 基于自注意力机制的无边界应用动作识别方法. 计算机研究与发展. 2022(05): 1092-1104 . 本站查看
    6. 邹福泰,俞汤达,许文亮. 基于隐马尔可夫模型的加密恶意流量检测. 软件学报. 2022(07): 2683-2698 .

    Other cited types(4)

Catalog

    Article views (846) PDF downloads (389) Cited by(10)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return