• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Ning Xin, Li Weijun, Li Haoguang, Liu Wenjie. Uncorrelated Locality Preserving Discriminant Analysis Based on Bionics[J]. Journal of Computer Research and Development, 2016, 53(11): 2623-2629. DOI: 10.7544/issn1000-1239.2016.20150630
Citation: Ning Xin, Li Weijun, Li Haoguang, Liu Wenjie. Uncorrelated Locality Preserving Discriminant Analysis Based on Bionics[J]. Journal of Computer Research and Development, 2016, 53(11): 2623-2629. DOI: 10.7544/issn1000-1239.2016.20150630

Uncorrelated Locality Preserving Discriminant Analysis Based on Bionics

More Information
  • Published Date: October 31, 2016
  • Imagery thinking model is an essential way of thinking for human being. It cognizes the regularity of things through various human senses, and then extracts the representative features. Therefore, using the method of imagery thinking to extract the essential characteristics of things is in conformity with the law of human cognition. According to the problem of feature extraction in face recognition technology, we propose an uncorrelated space locality preserving discriminant analysis algorithm—BULPDA based on the theory of unsupervised discriminant projection and image cognitive law. On the basis of the characteristics of human image cognitive, the proposed algorithm first builds a new construction method of similarity coefficient. Then, it applies uncorrelated space concepts to ensure the non-relevance of vector space. Finally, it gives the solution of the proposed algorithm based on singular value decomposition. The algorithm presents a new idea of feature extraction. The experimental results on the standard face database show that the proposed algorithm is better than the traditional preserving projection algorithms.
  • Related Articles

    [1]Cheng Haodong, Han Meng, Zhang Ni, Li Xiaojuan, Wang Le. Closed High Utility Itemsets Mining over Data Stream Based on Sliding Window Model[J]. Journal of Computer Research and Development, 2021, 58(11): 2500-2514. DOI: 10.7544/issn1000-1239.2021.20200554
    [2]Zhang Xiaojian, Wang Miao, Meng Xiaofeng. An Accurate Method for Mining top-k Frequent Pattern Under Differential Privacy[J]. Journal of Computer Research and Development, 2014, 51(1): 104-114.
    [3]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [4]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [5]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [6]Tong Yongxin, Zhang Yuanyuan, Yuan Mei, Ma Shilong, Yu Dan, Zhao Li. An Efficient Algorithm for Mining Compressed Sequential Patterns[J]. Journal of Computer Research and Development, 2010, 47(1): 72-80.
    [7]Liu Xuejun, Xu Hongbing, Dong Yisheng, Qian Jiangbo, Wang Yongli. Mining Frequent Closed Patterns from a Sliding Window over Data Streams[J]. Journal of Computer Research and Development, 2006, 43(10): 1738-1743.
    [8]Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.
    [9]Ma Haibing, Zhang Chenghong, Zhang Jin, and Hu Yunfa. Mining Frequent Patterns Based on IS\++-Tree Model[J]. Journal of Computer Research and Development, 2005, 42(4): 588-593.
    [10]Wang Wei, Zhou Haofeng, Yuan Qingqing, Lou Yubo, and Sui Baile. Mining Frequent Patterns Based on Graph Theory[J]. Journal of Computer Research and Development, 2005, 42(2): 230-235.

Catalog

    Article views (1170) PDF downloads (372) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return