• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhu Kuaikuai, Tian Qing, Chen Songcan. A Fast Discriminant Feature Extraction Framework Combining Implicit Spatial Smoothness with Explicit One for Two-Dimensional Image[J]. Journal of Computer Research and Development, 2017, 54(5): 1057-1066. DOI: 10.7544/issn1000-1239.2017.20160158
Citation: Zhu Kuaikuai, Tian Qing, Chen Songcan. A Fast Discriminant Feature Extraction Framework Combining Implicit Spatial Smoothness with Explicit One for Two-Dimensional Image[J]. Journal of Computer Research and Development, 2017, 54(5): 1057-1066. DOI: 10.7544/issn1000-1239.2017.20160158

A Fast Discriminant Feature Extraction Framework Combining Implicit Spatial Smoothness with Explicit One for Two-Dimensional Image

More Information
  • Published Date: April 30, 2017
  • Images have two-dimensional inherent spatial structures, and the pixels spatially close to each other have similar gray values, which means images are locally spatially smooth. To extract features, traditional methods usually convert an original image into a vector, resulting in the destruction of spatial structure. Thus 2D image-based feature extraction methods emerge, typically, such as 2DLDA and 2DPCA, which reduce time complexity significantly. However,2D-based methods manipulate on the whole raw (or column) of an image, leading to spatially under-smoothing. To overcome such shortcomings, spatial regularization is proposed by explicitly imposing a Laplacian penalty to constrain the projection coefficients to be spatially smooth and has achieved better performance than 2D-based methods, but sharing the genetic high computing cost with 1D methods. Implicit spatial regularization (ISR) constrains spatial smoothness within each local image region by dividing and reshaping image and then executing 2D-based feature extraction methods, resulting in a performance improvement of the typical bi-side 2DLDA over SSSL (a typical ESR method). However, ISR obtains the spatial smooth implicitly but has lack of explicit spatial constraints such that the feature space obtained by ISR is still not smooth enough. The optimization criteria of bi-side 2DLDA are not jointly convex simultaneously, resulting in high computing cost and globally optimal solution cannot be guaranteed. Inspired by statements above, we introduce a novel linear discriminant model called fast discriminant feature extraction framework combining implicit spatial smoothness with explicit one for two-dimensional image recognition (2D-CISSE). The key step of 2D-CISSE is to preprocess spatial smooth for images, then ISR is executed. 2D-CISSE not only retains spatial smooth explicitly, but also reinforces the explicit spatial constraints. Not only can it achieve globally optimal solution, but it also have generality, i.e. any out-of-shelf image smoothing methods and 2D-based feature extraction methods can be embedded into our framework. Finally, experimental results on four face datasets (Yale, ORL, CMU PIE and AR) and handwritten digit datasets (MNIST and USPS) demonstrate the effectiveness and superiority of our 2D-CISSE.
  • Related Articles

    [1]Wang Qihong, Jia Hongjie, Huang Longxia, Mao Qirong. Semantic Contrastive Clustering with Federated Data Augmentation[J]. Journal of Computer Research and Development, 2024, 61(6): 1511-1524. DOI: 10.7544/issn1000-1239.202220995
    [2]Zhou Zhiping, Zhu Shuwei, Zhang Daowen. Multiobjective Clustering Algorithm with Fuzzy Centroids for Categorical Data[J]. Journal of Computer Research and Development, 2016, 53(11): 2594-2606. DOI: 10.7544/issn1000-1239.2016.20150467
    [3]Wu Yingjie, Tang Qingming, Ni Weiwei, Sun Zhihui, Liao Shangbin. A Clustering Hybrid Based Algorithm for Privacy Preserving Trajectory Data Publishing[J]. Journal of Computer Research and Development, 2013, 50(3): 578-593.
    [4]Hou Wei, Dong Hongbin, Yin Guisheng. A Membership Degree Refinement-Based Evolutionary Clustering Algorithm[J]. Journal of Computer Research and Development, 2013, 50(3): 548-558.
    [5]Chong Zhihong, Ni Weiwei, Liu Tengteng, and Zhang Yong. A Privacy-Preserving Data Publishing Algorithm for Clustering Application[J]. Journal of Computer Research and Development, 2010, 47(12).
    [6]Liang Jiye, Bai Liang, Cao Fuyuan. K-Modes Clustering Algorithm Based on a New Distance Measure[J]. Journal of Computer Research and Development, 2010, 47(10): 1749-1755.
    [7]Lü Zonglei, Wang Jiandong, Li Ying, and Zai Yunfeng. An Index of Cluster Validity Based on Modal Logic[J]. Journal of Computer Research and Development, 2008, 45(9): 1477-1485.
    [8]Zhang Gang, Liu Yue, Guo Jiafeng, and Cheng Xueqi. A Hierarchical Search Result Clustering Method[J]. Journal of Computer Research and Development, 2008, 45(3): 542-547.
    [9]Jin Yifu, Zhu Qingsheng, Xing Yongkang. An Algorithm for Clustering of Outliers Based on Key Attribute Subspace[J]. Journal of Computer Research and Development, 2007, 44(4): 651-659.
    [10]Zheng Xin and Lin Xueyin. Locality Preserving Clustering for Image Database[J]. Journal of Computer Research and Development, 2006, 43(3): 463-469.

Catalog

    Article views (1069) PDF downloads (560) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return