• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Haiyan, Xiao Yikang. Dynamic Group Discovery Based on Density Peaks Clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. DOI: 10.7544/issn1000-1239.2018.20160928
Citation: Wang Haiyan, Xiao Yikang. Dynamic Group Discovery Based on Density Peaks Clustering[J]. Journal of Computer Research and Development, 2018, 55(2): 391-399. DOI: 10.7544/issn1000-1239.2018.20160928

Dynamic Group Discovery Based on Density Peaks Clustering

More Information
  • Published Date: January 31, 2018
  • Group recommendation has recently received wide attention due to its significance in real applications. As a premier step of group recommendation, group discovery is very important and discovery results will impact a lot on the performance of group recommendation. The higher similarity the groups have, the better effectiveness and stability the recommendation results will possess. However, current group discovery methods seldom consider the dynamicity of users’ tendency with variance of time context, nor do they support the existence of groups overlapping. In order to address the problems above, a dynamic group discovery method based on density peaks clustering (DGD-BDPC) is put forward in this paper. In the proposed DGD-BDPC method, quantitative users’ dynamic tendency is firstly obtained by dynamic poisson factorization. And secondly, users’ tendency under different time nodes for various items will be predicted with the employment of high order singular value decomposition (HOSVD) and user sets with high similarity will then be built according to users’ tendency. Finally, user sets will be clustered with a modification of density peaks clustering algorithm and group discovery will be realized successfully. Experimental results show that the proposed dynamic group discovery method based on density peaks clustering has higher accuracy, lower error and better stability compared with some other methods.
  • Related Articles

    [1]Liu Zhaoqing, Gu Shilin, Hou Chenping. Online Classification Algorithm with Feature Inheritably Increasing and Decreasing[J]. Journal of Computer Research and Development, 2022, 59(8): 1668-1682. DOI: 10.7544/issn1000-1239.20220073
    [2]Nie Dongdong, Gong Yaoling. A Sparse Signal Reconstruction Algorithm Based on Approximate l\-0 Norm[J]. Journal of Computer Research and Development, 2018, 55(5): 1090-1096. DOI: 10.7544/issn1000-1239.2018.20160829
    [3]Wang Yujun, Gao Qiankun, Zhang Xian, and Tao Qing. A Coordinate Descent Algorithm for Solving Capped-L1 Regularization Problems[J]. Journal of Computer Research and Development, 2014, 51(6): 1304-1312.
    [4]Liao Shizhong, Wang Mei, Zhao Zhihui. Regularization Path Algorithm of SVM via Positive Definite Matrix[J]. Journal of Computer Research and Development, 2013, 50(11): 2253-2261.
    [5]Wang Quan and Chen Songcan. Ensemble Learning of ELM Regressors Based on l1-regularization[J]. Journal of Computer Research and Development, 2012, 49(12): 2631-2637.
    [6]Kong Kang, Tao Qing, Wang Qunshan, Chu Dejun. A Sub-Gadient Based Solver for L1-Rgularization+Hinge-Loss Problem[J]. Journal of Computer Research and Development, 2012, 49(7): 1494-1499.
    [7]Huang Weixian and Wang Guojin. The L\-2 Distances for Rational Surfaces Based on Matrix Representation of Degree Elevation[J]. Journal of Computer Research and Development, 2010, 47(8): 1338-1345.
    [8]Yang Yuexiang, Luo Yong, Ye Zhaohui, Cheng Lizhi. A Complete Frequency Lossless Watermarking Method via Bandelet and Adaptive Matrix Norm[J]. Journal of Computer Research and Development, 2007, 44(12): 1996-2003.
    [9]Zhang Shichao, Xu Yinjun, Gu Ning, Shi Baile. A Norm-Driven Grid Workflow State Machine Model[J]. Journal of Computer Research and Development, 2006, 43(2): 307-313.
    [10]Tian Yongjun and Chen Songcan. Matrix-Pattern-Oriented Ho-Kashyap Classifier with Regularization Learning[J]. Journal of Computer Research and Development, 2005, 42(9): 1628-1632.

Catalog

    Article views (1242) PDF downloads (537) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return