• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
He Yunhua, Li Mengru, Li Hong, Sun Limin, Xiao Ke, Yang Chao. A Blockchain Based Incentive Mechanism for Crowdsensing Applications[J]. Journal of Computer Research and Development, 2019, 56(3): 544-554. DOI: 10.7544/issn1000-1239.2019.20170670
Citation: He Yunhua, Li Mengru, Li Hong, Sun Limin, Xiao Ke, Yang Chao. A Blockchain Based Incentive Mechanism for Crowdsensing Applications[J]. Journal of Computer Research and Development, 2019, 56(3): 544-554. DOI: 10.7544/issn1000-1239.2019.20170670

A Blockchain Based Incentive Mechanism for Crowdsensing Applications

More Information
  • Published Date: February 28, 2019
  • Crowdsensing applications collect large-scale sensing data by ubiquitous users carrying with smart devices. In crowdsensing applications, the quality of sensing data depends on the participation of high-skilled users, thus the users should be compensated for their resource consumption in the sensing task. Existing incentive mechanisms are difficult to meet the security requirements in the distributed environment of crowdsensing applications. For example, the reputation mechanism may suffer sybil attacks and whitewash attacks, which is unfair to honest users. The reciprocity mechanism is not flexible. The monetary scheme could make up the defects of the two preceding mechanisms, but it either relys on a central authority or does not give an explicit digital currency system which is provably secure, leading to possible system collapses or potential privacy disclosure caused by the ‘trusted’ center. In this paper, we propose a blockchain based incentive mechanism which uses a distributed architecture that is proved to be secure. In this distributed secure architecture, the participant users can be regarded as the nodes in a blockchain, and the payment transactions are recorded in the blockchain. The transactions will be verified by a majority of miners in the blockchain and they cannot be modified after being accepted by the miners. The incentive mechanism can prevent a part of participant users launching collusion attacks, and avoid the security threats brought by a trusted third party. Simulation experiments demonstrate the security strength and feasibility of the proposed incentive mechanism.
  • Related Articles

    [1]Ying Chenhao, Xia Fuyuan, Li Jie, Si Xueming, Luo Yuan. Incentive Mechanism Based on Truth Estimation of Private Data for Blockchain-Based Mobile Crowdsensing[J]. Journal of Computer Research and Development, 2022, 59(10): 2212-2232. DOI: 10.7544/issn1000-1239.20220493
    [2]Zhang Xiaoran, Yuan Man. General Data Quality Assessment Model and Ontological Implementation[J]. Journal of Computer Research and Development, 2018, 55(6): 1333-1344. DOI: 10.7544/issn1000-1239.2018.20160764
    [3]Zhou Ningnan, Sheng Wanxing, Liu Ke-yan, Zhang Xiao, Wang Shan. WR Approach: Determining Accurate Attribute Values in Big Data Integration[J]. Journal of Computer Research and Development, 2016, 53(2): 449-458. DOI: 10.7544/issn1000-1239.2016.20148275
    [4]Miao Dongjing, Liu Xianmin, Li Jianzhong. An Algorithm on Mining Approximate Functional Dependencies in Probabilistic Database[J]. Journal of Computer Research and Development, 2015, 52(12): 2857-2865. DOI: 10.7544/issn1000-1239.2015.20140685
    [5]Li Mohan, Li Jianzhong. Algorithms for Improving Data Currency[J]. Journal of Computer Research and Development, 2015, 52(9): 1992-2001. DOI: 10.7544/issn1000-1239.2015.20140687
    [6]Peng Fei, Huang Xiaofeng, Deng Tao, Long Min. A Blind Watermarking Algorithm for 2D Engineering Graphics Based on Entity Substitution and Mean Value of Wavelet Coefficients[J]. Journal of Computer Research and Development, 2010, 47(8): 1346-1353.
    [7]Peng Hong, Wang Xun, Wang Weixing, Wang Jun, Hu Deyu. Audio Watermarking Approach Based on Audio Features in Multiwavelet Domain[J]. Journal of Computer Research and Development, 2010, 47(2): 216-222.
    [8]Wang Xiangyang, Hou Limin, Yang Hongying. A Robust Watermarking Scheme Based on Image Feature and PseudoZernike Moments[J]. Journal of Computer Research and Development, 2008, 45(5): 772-778.
    [9]Sun Zhongwei, Feng Dengguo, Wu Chuankun. DWT Domain Blind Watermark Detection Based on Weak Signal Detection Theory[J]. Journal of Computer Research and Development, 2006, 43(11): 1920-1926.
    [10]Wang Rangding, Jiang Gangyi, Chen Jin'er, and Zhu Bin. An New Method of Audio-Digital Watermarking Based on Trap Strategy[J]. Journal of Computer Research and Development, 2006, 43(4): 613-620.
  • Cited by

    Periodical cited type(17)

    1. 牟星宇,陈晖,徐昕,江晓玲,李云峰,张鑫晶. 基于Tangle网络的群智感知隐私保护激励方法. 科学技术与工程. 2024(03): 1138-1145 .
    2. 杨明杰,王军,李瑞琪,郭名康,裴之垣,寇小霞. 能源星火链网络群智感知任务分配仿真. 信息技术. 2024(02): 166-171+179 .
    3. 张虹,李笑. 基于区块链的轻量级群智感知方案. 太原师范学院学报(自然科学版). 2024(01): 32-38 .
    4. 邵子豪,霍如,王志浩,倪东,谢人超. 基于区块链的移动群智感知数据处理研究综述. 浙江大学学报(工学版). 2024(06): 1091-1106 .
    5. 褚佳静,潘庆先,潘亚楠,刘庆菊. 基于信誉模型的众包质量控制算法. 山东大学学报(工学版). 2023(02): 93-101 .
    6. 张天祥,李雷孝,刘东江,高昊昱. 区块链激励机制在车联网领域的应用研究综述. 计算机工程与应用. 2023(09): 59-74 .
    7. 万涛,李婉琦,葛晶晶. 基于区块链的边缘移动群智感知声誉更新方案. 计算机应用研究. 2023(06): 1636-1640 .
    8. 周玉莹,马苗,申琪琪,任杰,张明瑞,杨波. 一种安全高效的去中心化移动群智感知激励模型. 计算机科学. 2023(S2): 906-915 .
    9. 蒋伟进,刘晓亮. 群智感知中移动用户招募的防贪婪激励机制研究. 控制与决策. 2022(01): 28-36 .
    10. 李志宏,谢永靖,许小颖. 基于区块链的知识社区中通证激励分配垄断对用户知识贡献的影响. 系统科学与数学. 2022(06): 1362-1374 .
    11. 孙新波,何志伟,张庆强,秦佳慧,孙浩博. 数字激励:概念、过程与反思. 外国经济与管理. 2022(12): 136-151 .
    12. 刘毅,朱承,成清,杨征,黄松平,张小可. 面向敏捷指挥控制的区块链赋能跨域服务. 指挥与控制学报. 2022(02): 169-178 .
    13. 胡元聪. 区块链技术激励机制的类型化分析. 学术界. 2021(01): 121-131 .
    14. 蔡婷,林晖,陈武辉,郑子彬,余阳. 区块链赋能的高效物联网数据激励共享方案. 软件学报. 2021(04): 953-972 .
    15. 牟星宇,廖祎玮,赵国生,王健. 基于Tangle网络的群智感知用户可信激励方法. 小型微型计算机系统. 2021(07): 1511-1517 .
    16. 徐琴,党晓圆. 抗攻击区块链框架下稳定性测评仿真. 计算机仿真. 2021(09): 361-365 .
    17. 赵国生,张慧,王健. 基于Tangle网络的移动群智感知数据安全交付模型. 电子与信息学报. 2020(04): 965-971 .

    Other cited types(15)

Catalog

    Article views (2199) PDF downloads (806) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return