• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Shaobo, Wang Guojun, Liu Qin, Liu Jianxun. Trajectory Privacy Protection Method Based on Multi-Anonymizer[J]. Journal of Computer Research and Development, 2019, 56(3): 576-584. DOI: 10.7544/issn1000-1239.2019.20180033
Citation: Zhang Shaobo, Wang Guojun, Liu Qin, Liu Jianxun. Trajectory Privacy Protection Method Based on Multi-Anonymizer[J]. Journal of Computer Research and Development, 2019, 56(3): 576-584. DOI: 10.7544/issn1000-1239.2019.20180033

Trajectory Privacy Protection Method Based on Multi-Anonymizer

More Information
  • Published Date: February 28, 2019
  • At present, trajectory privacy protection in continuous location-based services has attracted wide attention. Some scholars have proposed some privacy-preserving methods, which mainly adopt the centralized structure based on the trusted third-party. However, there are privacy risks and performance bottlenecks in this structure. To overcome these defects, a trajectory privacy-preserving method based on multi-anonymizer (TPMA) is proposed by deploying multiple anonymizers between the user and the location service provider. In each query the user first selects a pseudonym, and the user’s query content is divided into n shares by the Shamir threshold scheme. Further, they are sent to n different anonymizers that randomly selected for processing, and one of the anonymizers is responsible for the user’s K-anonymity. In this method, the attacker cannot obtain the user’s trajectory and query content from a single anonymizer, and the anonymizer can be semi-trusted entity. The method can enhance the privacy of the user’s trajectory and can effectively solve the single point failure and the performance bottleneck in a single anonymizer structure. Security analysis shows that our approach can effectively protect the user’s trajectory privacy. Experiments show this method can reduce the computation and communication overhead of the single anonymizer compared with the trusted third party model.
  • Cited by

    Periodical cited type(9)

    1. 张学军,许陈,田丰,杜晓刚,黄海燕,徐彤. 效用增强的差分私有轨迹合成方法. 北京航空航天大学学报. 2024(12): 3615-3631 .
    2. 杨旭东,李秋燕,高岭,刘鑫,邓雅妮. 一种基于多区块链协作的分布式位置匿名方法. 计算机工程与科学. 2024(12): 2171-2185 .
    3. 胡升庆. 基于位置的服务中位置隐私保护技术分析. 信息技术与信息化. 2022(11): 45-48 .
    4. 郑振青,毋小省,王辉,刘琨,申自浩. 移动社交网络中的轨迹隐私PTPM保护方法. 小型微型计算机系统. 2021(10): 2153-2160 .
    5. 付伟,顾晨阳,高强. 基于属性加密的多用户共享ORAM方案. 计算机应用. 2020(02): 497-502 .
    6. 罗恩韬,段国云,周雷,朱小玉. 移动医疗中一种匿名代理可追踪隐私保护方案. 计算机研究与发展. 2020(05): 1070-1079 . 本站查看
    7. 冯景瑜,杨锦雯,张瑞通,张文波. 抗位置隐私泄露的物联网频谱共享激励机制. 计算机研究与发展. 2020(10): 2209-2220 . 本站查看
    8. 张青云,张兴,李万杰,李晓会. 基于LBS系统的位置轨迹隐私保护技术综述. 计算机应用研究. 2020(12): 3534-3544 .
    9. 张家磊,钟伯成,房保纲,丁佳蓉,贾媛媛. 一种基于K匿名技术在轨迹隐私保护方法中的改进. 智能计算机与应用. 2019(05): 250-252+256 .

    Other cited types(22)

Catalog

    Article views (1021) PDF downloads (475) Cited by(31)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return