• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Bicheng, Gu Haifeng, Chen Mingsong, Gu Shouzhen, Chen Wenjie. An Efficient Processing In Memory Framework Based on Skyrmion Material[J]. Journal of Computer Research and Development, 2019, 56(4): 798-809. DOI: 10.7544/issn1000-1239.2019.20180157
Citation: Liu Bicheng, Gu Haifeng, Chen Mingsong, Gu Shouzhen, Chen Wenjie. An Efficient Processing In Memory Framework Based on Skyrmion Material[J]. Journal of Computer Research and Development, 2019, 56(4): 798-809. DOI: 10.7544/issn1000-1239.2019.20180157

An Efficient Processing In Memory Framework Based on Skyrmion Material

More Information
  • Published Date: March 31, 2019
  • As a new computing paradigm, processing in memory (PIM) allows the parallel computation in both processors and memories, which drastically reduce the movements between computation units and storage units. Therefore, PIM can be considered as an efficient technology to somewhat address the shortcomings of the von neumann architecture. Compared with traditional random access memories, racetrack memory has many merits including high density, non-volatility, and low static power. Therefore, it can be used for efficient PIM computing. To address the shortages of domain-wall based PIM, this paper proposes a novel PIM framework based on the Skyrmion material. In this framework, we use Skyrmion-based racetrack memories to construct storage units, and use Skyrmion-based logic gates to compose both adders and multipliers for the computation units. Since our framework does not need CMOS (complementary metal oxide semiconductor) circuits to assist the underlying computation unit construction, the design complexity is significantly reduced. Meanwhile, based on our proposed optimization methods for read and write operations at the circuit layer and address mapping mode of the memory at the system level, the performance of our framework is drastically improved. Experimental results show that compared with domain-wall based PIM framework, our approach can achieve 48.1% time improvement and 42.9% energy savings on average.
  • Related Articles

    [1]Li Jianhui, Shen Zhihong, Meng Xiaofeng. Scientific Big Data Management: Concepts, Technologies and System[J]. Journal of Computer Research and Development, 2017, 54(2): 235-247. DOI: 10.7544/issn1000-1239.2017.20160847
    [2]Shen Bilong, Zhao Ying, Huang Yan, Zheng Weimin. Survey on Dynamic Ride Sharing in Big Data Era[J]. Journal of Computer Research and Development, 2017, 54(1): 34-49. DOI: 10.7544/issn1000-1239.2017.20150729
    [3]ZhuWeiheng, YinJian, DengYuhui, LongShun, QiuShiding. Efficient Duplicate Detection Approach for High Dimensional Big Data[J]. Journal of Computer Research and Development, 2016, 53(3): 559-570. DOI: 10.7544/issn1000-1239.2016.20148218
    [4]Meng Xiaofeng, Du Zhijuan. Research on the Big Data Fusion: Issues and Challenges[J]. Journal of Computer Research and Development, 2016, 53(2): 231-246. DOI: 10.7544/issn1000-1239.2016.20150874
    [5]Li Weibang, Li Zhanhuai, Chen Qun, Jiang Tao, Liu Hailong, Pan Wei. Functional Dependencies Discovering in Distributed Big Data[J]. Journal of Computer Research and Development, 2015, 52(2): 282-294. DOI: 10.7544/issn1000-1239.2015.20140229
    [6]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [7]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [8]Meng Xiaofeng, Li Yong, Jonathan J. H. Zhu. Social Computing in the Era of Big Data: Opportunities and Challenges[J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491. DOI: 10.7544/issn1000-1239.2013.20130890
    [9]Li Jianzhong and Liu Xianmin. An Important Aspect of Big Data: Data Usability[J]. Journal of Computer Research and Development, 2013, 50(6): 1147-1162.
    [10]Meng Xiaofeng and Ci Xiang. Big Data Management: Concepts,Techniques and Challenges[J]. Journal of Computer Research and Development, 2013, 50(1): 146-169.
  • Cited by

    Periodical cited type(5)

    1. 廖鑫,黎懿熠,欧阳军林,周江盟,戴湘桃,秦拯. 一种基于深度学习的移动端隐写方法. 湖南大学学报(自然科学版). 2022(04): 18-25 .
    2. 何凤英. 改进卷积神经网络在图像隐写检测中的应用. 福建电脑. 2022(09): 1-6 .
    3. 黄思远,张敏情,柯彦,毕新亮. 基于显著性检测的图像隐写分析方法. 计算机应用. 2021(02): 441-448 .
    4. 黄思远,张敏情,柯彦,毕新亮. 基于自注意力机制的图像隐写分析方法. 计算机应用研究. 2021(04): 1190-1194 .
    5. 吴煌,李凯勇. 基于DCT域的数字图像隐写容量归一化方法. 计算机仿真. 2021(08): 207-211 .

    Other cited types(5)

Catalog

    Article views (1240) PDF downloads (484) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return