• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liu Xuehua, Ding Liping, Liu Wenmao, Zheng Tao, Li Yanfeng, Wu Jingzheng. A Cloud Forensics Method Based on SDS and Cloud Forensics Trend Analysis[J]. Journal of Computer Research and Development, 2019, 56(10): 2262-2276. DOI: 10.7544/issn1000-1239.2019.20190394
Citation: Liu Xuehua, Ding Liping, Liu Wenmao, Zheng Tao, Li Yanfeng, Wu Jingzheng. A Cloud Forensics Method Based on SDS and Cloud Forensics Trend Analysis[J]. Journal of Computer Research and Development, 2019, 56(10): 2262-2276. DOI: 10.7544/issn1000-1239.2019.20190394

A Cloud Forensics Method Based on SDS and Cloud Forensics Trend Analysis

More Information
  • Published Date: September 30, 2019
  • With the development and popularization of cloud computing, the security situation of cloud computing environment is getting worse. Cloud forensics is of great significance for safeguarding the cloud computing security. The current cloud forensics technology research is at an early stage, and cloud forensics is faced with problems such as lack of digital evidence integrity, high forensics overhead and low intelligence. Therefore, an intelligent cloud forensics method based on SDS (software defined security) and cloud forensics trend analysis is proposed to mitigate some of these problems. Firstly, a cloud forensics architecture based on software defined security is proposed to realize collaborative real-time forensics between cloud network and cloud computing platform. Secondly, a cloud forensics trend analysis algorithm based on the HMM (hidden Markov model) is proposed to realize intelligent forensics strategy decision-making and forensics resource scheduling in the cloud forensics architecture. The experimental results show that, compared with the separate network forensics method and cloud computing platform forensics method, the forensics capacity of this method increases to 91.6%, and the forensics overhead of this method is in between, achieving a better effect between forensics capability and forensics overhead. This method has some referential significance for cloud service providers to provide cloud forensics service.
  • Cited by

    Periodical cited type(9)

    1. 贺冠博,张鹏,邓卓茗,黄承速,冯淞耀. 基于业务牵引的电网企业IT资源精细化管理研究. 企业改革与管理. 2025(03): 160-162 .
    2. 刘帅帅,姜春茂. 能耗感知下云资源三支粒度调度策略研究. 计算机应用研究. 2023(03): 810-815 .
    3. 周杨. 基于云桌面技术的高校同声传译语音室远程控制方法. 信息技术. 2023(06): 113-118 .
    4. 张胜昌,赵良昆,苏学娟. 基于鸟群算法的医院数据中心虚拟化资源分配方法. 自动化技术与应用. 2023(08): 92-95 .
    5. 周杨,刘婷. NewClass数字语言实验室的云桌面系统设计. 信息技术. 2022(07): 103-108 .
    6. 杨傲,马春苗,伍卫国,王思敏,赵坤. 一种面向数据中心的能耗感知虚拟机放置策略. 西安电子科技大学学报. 2022(05): 145-153 .
    7. 罗泽鹏,蒋运承,胡致杰. 云计算虚拟资源增强型多点安全传输仿真. 计算机仿真. 2021(01): 158-161+166 .
    8. 陈雪娟,邵亚丽. 面向云计算数据中心的弹性资源分配算法. 计算机仿真. 2021(01): 217-220+235 .
    9. 房明磊,耿显亚. 基于云计算的大数据中心资源分配方法研究. 廊坊师范学院学报(自然科学版). 2021(02): 10-13 .

    Other cited types(13)

Catalog

    Article views (1273) PDF downloads (469) Cited by(22)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return